Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(19): 28671-28694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561536

RESUMEN

The research aimed to determine the influence of endophytic fungi on tolerance, growth and phytoremediation ability of Prosopis juliflora in heavy metal-polluted landfill soil. A consortium of 13 fungal isolates as well as Prosopis juliflora Sw. DC was used to decontaminate heavy metal-polluted landfill soil. Enhanced plant growth (biomass and root and shoot lengths) and production of carotenoids, chlorophyll and amino acids L-phenylalanine and L-leucine that are known to enhance growth were found in the treated P. juliflora. Better accumulations of heavy metals were observed in fungi-treated P. juliflora over the untreated one. An upregulated activity of peroxidase, catalase and ascorbate peroxidase was recorded in fungi-treated P. juliflora. Additionally, other metabolites, such as glutathione, 3,5,7,2',5'-pentahydroxyflavone, 5,2'-dihydroxyflavone and 5,7,2',3'-tetrahydroxyflavone, and small peptides, which include Lys Gln Ile, Ser Arg Ala, Asp Arg Gly, Arg Ser Ser, His His Arg, Arg Thr Glu, Thr Arg Asp and Ser Pro Arg, were also detected. These provide defence supports to P. juliflora against toxic metals. Inoculating the plant with the fungi improved its growth, metal accumulation as well as tolerance against heavy metal toxicity. Such a combination can be used as an effective strategy for the bioremediation of metal-polluted soil.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Prosopis , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Prosopis/metabolismo , Metales Pesados/metabolismo , Hongos/metabolismo , Suelo/química
2.
Environ Sci Pollut Res Int ; 30(31): 76308-76350, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248351

RESUMEN

Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos , Ecosistema , Insectos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Tereftalatos Polietilenos
3.
Int J Food Sci ; 2014: 671701, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26904642

RESUMEN

Dehydrated uncooked potato (Irish and sweet) flour was blended by weight with commercial wheat flour at 0 to 10% levels of substitution to make bread. Comparative study of the microbial and nutritional qualities of the bread was undertaken. The total aerobic bacterial counts ranged from 3.0 × 10(5) cfu/g to 1.09 × 10(6) cfu/g while the fungal counts ranged from 8.0 × 10(1) cfu/g to 1.20 × 10(3) cfu/g of the sample. Coliforms were not detected in the bread. Bacteria isolated were species of Bacillus, Staphylococcus, and Micrococcus while fungi isolates were species of Aspergillus, Penicillium, Rhizopus, and Mucor. The mean sensory scores (color, aroma, taste, texture, and general acceptability) were evaluated. The color of the bread baked from WF/IPF2 (wheat/Irish potato flour, 95 : 5%) blend was preferred to WF (wheat flour, 100%) while WF/SPF1 (wheat/sweet potato flour, 100%) and WF/IPF1 (wheat/Irish potato flour, 90 : 10%) aroma were preferred to WF. However, the bread baked from WF, WF/IPF2 (wheat flour/Irish potato flour, 95 : 5%), and WF/SPF2 (wheat/sweet potato flour, 95 : 5%) was more acceptable than other blends. The use of hydrated potato flour in bread making is advantageous due to increased nutritional value, higher bread yield, and reduced rate of staling.

4.
Int Sch Res Notices ; 2014: 762021, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27433535

RESUMEN

The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol(-1), 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol(-1), 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol(-1), incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol(-1), and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol(-1). The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA