Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 115: 105210, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332231

RESUMEN

A simple and efficient protocol was developed to synthesize a new library of thiazolidine-4-one molecular hybrids (4a-n) via a one-pot multicomponent reaction involving 5-substituted phenyl-1,3,4-thiadiazol-2-amines, substituted benzaldehydes and 2-mercaptoacetic acid. The synthesized compounds were evaluated in vitro for their antidiabetic activities through α-glucosidase and α-amylase inhibition as well as their antioxidant and antimicrobial potentials. Compound 4e exhibited the most promising α-glucosidase and α-amylase inhibition with an IC50 value of 2.59 µM, which is ~1.5- and 14-fold superior as compared to the standard inhibitor acarbose. Structure-activity relationship (SAR) analysis revealed that the nature and position of substituents on the phenyl rings had a significant effect on the inhibitory potency.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Tiadiazoles/farmacología , Tiazolidinas/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiadiazoles/síntesis química , Tiadiazoles/química , Tiazolidinas/síntesis química , Tiazolidinas/química , alfa-Amilasas/metabolismo
2.
Mol Divers ; 25(4): 2201-2218, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32507981

RESUMEN

Antimicrobial resistance has become a significant threat to global public health, thus precipitating an exigent need for new drugs with improved therapeutic efficacy. In this regard, molecular hybridization is deemed as a viable strategy to afford multi-target-based drug candidates. Herein, we report a library of quinoline-1H-1,2,3-triazole molecular hybrids synthesized via copper(I)-catalyzed azide-alkyne [3 + 2] dipolar cycloaddition reaction (CuAAC). Antimicrobial evaluation identified compound 16 as the most active hybrid in the library with a broad-spectrum antibacterial activity at an MIC80 value of 75.39 µM against methicillin-resistant S. aureus, E. coli, A. baumannii, and multidrug-resistant K. pneumoniae. The compound also showed interesting antifungal profile against C. albicans and C. neoformans at an MIC80 value of 37.69 and 2.36 µM, respectively, superior to fluconazole. In vitro toxicity profiling revealed non-hemolytic activity against human red blood cells (hRBC) but partial cytotoxicity to human embryonic kidney cells (HEK293). Additionally, in silico studies predicted excellent drug-like properties and the importance of triazole ring in stabilizing the complexation with target proteins. Overall, these results present compound 16 as a promising scaffold on which other molecules can be modeled to deliver new antimicrobial agents with improved potency.


Asunto(s)
Triazoles
3.
Bioorg Med Chem Lett ; 30(22): 127544, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32920143

RESUMEN

New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Oxadiazoles/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Pirimidinas/farmacología , Tiadiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/química , Estructura Molecular , Oxadiazoles/química , Neoplasias Pancreáticas/patología , Pirimidinas/química , Relación Estructura-Actividad , Tiadiazoles/química
4.
Bioorg Med Chem Lett ; 30(22): 127576, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32980514

RESUMEN

A series of 4-aminoquinoline-isoindoline-dione-isoniazid triads were synthesized and assessed for their anti-mycobacterial activities and cytotoxicity. Most of the synthesized compounds exhibited promising activities against the mc26230 strain of M. tuberculosis with MIC in the range of 5.1-11.9 µM and were non-cytotoxic against Vero cells. The conjugates lacking either isoniazid or quinoline core in their structural framework failed to inhibit the growth of M. tuberculosis; thus, further strengthening the proposed design of triads in the present study.


Asunto(s)
Aminoquinolinas/farmacología , Antituberculosos/farmacología , Diseño de Fármacos , Indoles/farmacología , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Aminoquinolinas/química , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Indoles/química , Isoniazida/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
5.
Chem Biodivers ; 17(1): e1900462, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31788939

RESUMEN

A series of coumarin-tagged ß-lactam triazole hybrids (10a-10o) were synthesized and tested for their cytotoxic activity against MDA-MB-231 (triple negative breast cancer), MCF-7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK-293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF-7 cancer cell lines with IC50 values of 53.55 and 58.62 µm, respectively. More importantly, compounds 10b and 10d were non-cytotoxic against HEK-293 cell lines. Structure-activity relationship (SAR) studies suggested that the nitro and chloro group at the C-3 position of phenyl ring are favorable for anticancer activity, particularly against MCF-7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Cumarinas/farmacología , Triazoles/farmacología , beta-Lactamas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Relación Estructura-Actividad , Triazoles/química , beta-Lactamas/química
6.
Bioorg Med Chem ; 26(21): 5612-5623, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360952

RESUMEN

A novel library of coumarin tagged 1,3,4 oxadiazole conjugates was synthesized and evaluated for their antiproliferative activities against MDA-MB-231 and MCF-7 breast cancer cell lines. The evaluation studies revealed that compound 9d was the most potent molecule with an IC50 value of <5 µM against the MCF-7 cell line. Interestingly, compounds 10b and 11a showed a similar trend with lower inhibitory concentration (IC50 = 7.07 µM), in Estrogen Negative (ER-) cells than Estrogen Positive (ER+) cells. Structure-activity relationship (SAR) studies revealed that conjugates bearing benzyl moieties (9b, 9c and 9d) had superior activities compared to their alkyl analogues. The most potent compound 9d showed ∼1.4 times more potent activity than tamoxifen against MCF-7 cell line; while the introduction of sulfone unit in compounds 11a, 11b and 11c resulted in significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines. These results were further supported by docking studies, which revealed that the stronger binding affinity of the synthesized conjugates is due to the presence of sulfone unit attached to the substituted benzyl moiety in their pharmacophores.


Asunto(s)
Antineoplásicos/farmacología , Cumarinas/farmacología , Oxadiazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Cumarinas/síntesis química , Cumarinas/química , Receptores ErbB/química , Receptor alfa de Estrógeno/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Relación Estructura-Actividad
7.
ChemistryOpen ; : e202400014, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506589

RESUMEN

Two libraries of quinoline-based hybrids 1-(7-chloroquinolin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and 7-chloro-N-phenylquinolin-4-amine were synthesized and evaluated for their α-glucosidase inhibitory and antioxidant properties. Compounds with 4-methylpiperidine and para-trifluoromethoxy groups, respectively, showed the most promising α-glucosidase inhibition activity with IC50 =46.70 and 40.84 µM, compared to the reference inhibitor, acarbose (IC50 =51.73 µM). Structure-activity relationship analysis suggested that the cyclic secondary amine pendants and para-phenyl substituents account for the variable enzyme inhibition. Antioxidant profiling further revealed that compounds with an N-methylpiperazine and N-ethylpiperazine ring, respectively, have good DPPH scavenging abilities with IC50 =0.18, 0.58 and 0.93 mM, as compared to ascorbic acid (IC50 =0.05 mM), while the best DPPH scavenger is NO2 -substituted compound (IC50 =0.08 mM). Also, compound with N-(2-hydroxyethyl)piperazine moiety emerged as the best NO radical scavenger with IC50 =0.28 mM. Molecular docking studies showed that the present compounds are orthosteric inhibitors with their quinoline, pyrimidine, and 4-amino units as crucial pharmacophores furnishing α-glucosidase binding at the catalytic site. Taken together, these compounds exhibit dual potentials; i. e., potent α-glucosidase inhibitors and excellent free radical scavengers. Hence, they may serve as structural templates in the search for agents to manage Type 2 diabetes mellitus. Finally, in preliminary assays investigating the anti-tubercular potential of these compounds, two pyrazolopyrimidine series compounds and a 7-chloro-N-phenylquinolin-4-amine hybrid showed sub-10 µM whole-cell activities against Mycobacterium tuberculosis.

8.
Biomed Pharmacother ; 170: 116037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128184

RESUMEN

Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene that promotes tumor progression, metastasis, and multidrug resistance. CHD1L expression is indicative of poor outcomes and low survival in cancer patients with various cancer types. Herein, we report a set of CHD1L inhibitors (CHD1Li) discovered from high-throughput screening and evaluated using enzyme inhibition, 3D tumor organoid cytotoxicity and mechanistic assays. The structurally distinct compounds 8-11 emerged as hits with promising bioactivity by targeting CHD1L. CHD1Li were further examined for their stability in human and mouse liver microsomes, which showed compounds 9 and 11 to be the most metabolically stable. Additionally, molecular modeling studies of CHD1Li with the target protein shed light on key pharmacophore features driving CHD1L binding. Taken together, these results expand the chemical space of CHD1Li as a potential targeted therapy for colorectal cancer and other cancers.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , ADN Helicasas/metabolismo , Neoplasias/tratamiento farmacológico
9.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015183

RESUMEN

Diabetes mellitus (DM) is a multifaceted metabolic disorder that remains a major threat to global health security. Sadly, the clinical relevance of available drugs is burdened with an upsurge in adverse effects; hence, inhibiting the carbohydrate-hydrolyzing enzymes α-glucosidase and α-amylase while preventing oxidative stress is deemed a practicable strategy for regulating postprandial glucose levels in DM patients. We report herein the α-glucosidase and α-amylase inhibition and antioxidant profile of quinoline hybrids 4a-t and 12a-t bearing 1,3,4-oxadiazole and 1,2,3-triazole cores, respectively. Overall, compound 4i with a bromopentyl sidechain exhibited the strongest α-glucosidase inhibition (IC50 = 15.85 µM) relative to reference drug acarbose (IC50 = 17.85 µM) and the best antioxidant profile in FRAP, DPPH, and NO scavenging assays. Compounds 4a and 12g also emerged as the most potent NO scavengers (IC50 = 2.67 and 3.01 µM, respectively) compared to gallic acid (IC50 = 728.68 µM), while notable α-glucosidase inhibition was observed for p-fluorobenzyl compound 4k (IC50 = 23.69 µM) and phenyl-1,2,3-triazolyl compound 12k (IC50 = 22.47 µM). Moreover, kinetic studies established the mode of α-glucosidase inhibition as non-competitive, thus classifying the quinoline hybrids as allosteric inhibitors. Molecular docking and molecular dynamics simulations then provided insights into the protein-ligand interaction profile and the stable complexation of promising hybrids at the allosteric site of α-glucosidase. These results showcase these compounds as worthy scaffolds for developing more potent α-glucosidase inhibitors with antioxidant activity for effective DM management.

10.
Acta Pharm ; 72(2): 199-224, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651508

RESUMEN

The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus) has emerged as a significant threat to public health with startling drawbacks in all sectors globally. This study investigates the practicality of some medicinal plants for SARS-CoV-2 therapy using a systematic review and meta-analysis of their reported SARS-CoV-1 inhibitory potencies. Relevant data were systematically gathered from three databases, viz., Web of Science, PubMed and Scopus. The information obtained included botanical information, extraction method and extracts concentrations, as well as the proposed mechanisms. Fourteen articles describing 30 different plants met our eligibility criteria. Random effects model and subgroup analysis were applied to investigate heterogeneity. According to subgroup analysis, the substantial heterogeneity of the estimated mean based on the IC 50 values reporting the most potent anti-SARS-CoV 3C--like protease (3CLpro) inhibitors (10.07 %, p < 0.0001), was significantly higher compared to the most active anti-SARS-CoV papain-like protease (PLpro) inhibitors (6.12 %, p < 0.0001). More importantly, the literature analysis revealed that fruit extracts of Rheum palmatum L. and the compound cryptotanshinone isolated from the root of Salvia miltiorrhiza (IC 50 = 0.8 ± 0.2 µmol L-1) were excellent candidates for anti--SARS-CoV targeting PLpro. Meanwhile, iguesterin (IC 50 = 2.6 ± 0.6 µmol L-1) isolated from the bark of Tripterygium regelii emerged as the most excellent candidate for anti-SARS--CoV targeting 3CLpro. The present systematic review and meta-analysis provide valuable and comprehensive information about potential medicinal plants for SARS-CoV-2 inhibition. The chemotypes identified herein can be adopted as a starting point for developing new drugs to contain the novel virus.


Asunto(s)
COVID-19 , Plantas Medicinales , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Inhibidores de Proteasas , Péptido Hidrolasas , Antivirales/farmacología , Antivirales/uso terapéutico
11.
J Med Chem ; 65(5): 3943-3961, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35192363

RESUMEN

Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays. The results led to the prioritization of six lead CHD1Li analogues with improved potency, antitumor activity, and drug-like properties including metabolic stability and in vivo pharmacokinetics. Furthermore, lead CHD1Li 6.11 proved to be an orally bioavailable antitumor agent, significantly reducing the tumor volume of CRC xenografts generated from isolated quasi mesenchymal cells (M-phenotype), which possess enhanced tumorigenic properties. In conclusion, we reported the optimization of first-in-class inhibitors of oncogenic CHD1L as a novel therapeutic strategy with potential for the treatment of cancer.


Asunto(s)
Antineoplásicos , ADN Helicasas , Proteínas de Unión al ADN , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Línea Celular Tumoral , ADN Helicasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Oncogenes
12.
ChemMedChem ; 16(13): 2050-2067, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33724717

RESUMEN

Heterocyclic compounds constitute a unique class of organic compounds endowed with a wide range of synthetic and pharmaceutical applications. Pyrimidinones and their fused analogues have received focused attention in this regard, partly due to their mimicry of nucleobases which consequently forges their interesting medicinal properties. Over the years, the medicinal chemistry research community has experienced an upsurge in articles describing the exploration of these scaffolds to develop effective therapeutic agents. Several biological activities, including antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anticonvulsive, and antihistaminic, have been well documented. This minireview presents a compendium of recent developments (2017-2020) focused on the synthesis and biological activities of fused pyrimidinones. The goal is to update medicinal chemists on the therapeutic relevance of fused pyrimidinones and the molecular architecture of clinic-worthy drug candidates. A brief account of the structure-activity relationships (SAR) revealed from different biological assays is also discussed.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Desarrollo de Medicamentos , Hipoglucemiantes/farmacología , Pirimidinonas/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Estructura Molecular , Pirimidinonas/síntesis química , Pirimidinonas/química
13.
Curr Med Chem ; 28(33): 6805-6845, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33749549

RESUMEN

Chalcones are an interesting class of compounds endowed with a plethora of biological activities beneficial to human health. These chemotypes have continued to attract increased research attention over the years; hence, numerous natural and synthetic chalcones have found with interesting anticancer activities through the inhibition of various molecular targets including ABCG2, BCRP, P-glycoprotein, 5α-reductase, Androgen Receptor (AR), Histone Deacetylases (HDAC), Sirtuin 1, proteasome, Vascular Endothelial Growth Factor (VEGF), Cathepsin-K, tubulin, CDC25B phosphatase, Topoisomerase, EBV, NF-κB, mTOR, BRAF, and Wnt/ß-catenin. Moreover, the study of intrinsic mechanisms of action, particularly relating to specific cellular pathways and modes of engagement with molecular targets, may help medicinal chemists to develop more effective, selective, and cost-effective chalcone-based anticancer drugs. This review, therefore, sheds light on the effect of structural variations on the anticancer potency of chalcone hybrids reported in 2018-2019 alongside their mechanism of action, molecular targets, and potential impacts on effective cancer chemotherapy.


Asunto(s)
Antineoplásicos , Chalconas , Antineoplásicos/farmacología , Chalconas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Relación Estructura-Actividad
14.
Anticancer Agents Med Chem ; 21(10): 1228-1239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32990543

RESUMEN

BACKGROUND: The persistence of breast cancer as the leading cause of mortality among women, coupled with drug resistance to tamoxifen, the standard endocrine therapy for the disease, exacts continuous attention. To this effect, molecular hybridisation offers an attractive route to drugs with improved bioactivity profiles. OBJECTIVE: The primary goal of this study was to examine the potential of 1H-1,2,3-triazole linked quinolineisatin molecular hybrids as drug candidates against breast cancer and Methicillin-Resistant Staphylococcus aureus (MRSA) cells. METHODS: The quinoline-isatin hybrids were synthesised via click chemistry-mediated molecular hybridisation strategy. Anti-breast cancer activity was determined in 3-(4,5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using Estrogen-Responsive (ER+) MCF-7 and MDA-MB-231 (Triple-Negative Breast Cancer -TNBC) cells, while antimicrobial efficacy was established via the broth dilution method. Also, the toxicity profile of potent compounds to non-cancerous cells was determined using human embryonic kidney cells (HEK293) and human Red Blood Cells (hRBCs). In silico techniques were employed to predict the druglike properties of potent compounds and understand their binding modes with Estrogen Receptor alpha (ERα). RESULTS: Compounds 7g-i exhibited the strongest cytotoxicity to MCF-7 cells with IC50 values of 23.54, 23.66, and 32.50µM, respectively. Interestingly, compound 7h also emerged as the best drug candidate against MDAMB- 231 and MRSA cells with IC50=71.40µM and MIC80=27.34µM, respectively. Structure-activity relationship analysis revealed that quinoline-2-carbaldehyde and 5,7-disubstituted isatin moieties confer desirable potency. These compounds showed no significant cytotoxic or haemolytic effects on HEK293 or hRBCs in vitro at their active concentrations; hence, eliciting their selectivity for cancer cells. In silico studies also presented the drugability of potent compounds and the likely structural features interacting with amino acid residues at the ligandbinding domain of ERα. CONCLUSION: These results suggest that the identified 1H-1,2,3-triazole-linked quinoline-isatin hybrids are viable chemotypes that can be adopted as templates for the development of new anti-breast cancer and anti-MRSA agents.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Isatina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Quinolinas/farmacología , Triazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Isatina/química , Células MCF-7 , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinolinas/química , Relación Estructura-Actividad , Triazoles/química
15.
Chem Biol Drug Des ; 95(1): 162-173, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580533

RESUMEN

A library of novel pyrazole-imidazo[1,2-α]pyridine scaffolds was designed and synthesized through a one-pot three-component tandem reaction. The structures of synthesized conjugates were confirmed by spectroscopic techniques (NMR, IR and HRMS). In vitro antibacterial evaluation of the twelve synthesized molecules (7a, 8a-k) against methicillin-resistant Staphylococcus aureus and normal strains of Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia and Pseudomonas aeruginosa established 8b, 8d, 8e, 8h and 8i as potent antibacterial agents with superior minimum bactericidal concentration, compared with standard drug ciprofloxacin. Molecular docking studies of all active compounds into the binding site of glucosamine-6-phosphate synthase were further performed in order to have a comprehensive understanding of putative binding modes within the active sites of the receptor.


Asunto(s)
Antibacterianos/síntesis química , Inhibidores Enzimáticos/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/química , Pirazoles/síntesis química , Piridinas/síntesis química , Bibliotecas de Moléculas Pequeñas/síntesis química , Antibacterianos/farmacología , Sitios de Unión , Ciprofloxacina/farmacología , Ciprofloxacina/normas , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/antagonistas & inhibidores , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirazoles/farmacología , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
16.
RSC Adv ; 10(27): 15836-15845, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35493668

RESUMEN

A series of naphthalimide-chalcone/pyrazoline conjugates was prepared and evaluated for their anti-breast cancer potential against estrogen responsive, i.e. MCF-7 (ER+), and triple-negative, i.e. MDA-MB-231 (ER-), cell lines. The structure-activity-relationship (SAR) was deduced based on the influence of linker length, substituents on the phenyl ring and the generated functionalities, on anti-proliferative activities. Docking simulations further delineate the type of interactions of the designed molecules with the selected targets. This report discloses the scope of triazole tethered naphthalimide-chalcone/pyrazoline conjugates as anti breast cancer agents.

17.
Eur J Med Chem ; 187: 111921, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31835168

RESUMEN

The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, ß-glucuronidase (ßGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of ß-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of ßGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of ßGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved ßGLU inhibitory potency and the development of new therapeutic agents in consequential.


Asunto(s)
Glucuronidasa/antagonistas & inhibidores , Glicoproteínas/farmacología , Relación Dosis-Respuesta a Droga , Glucuronidasa/metabolismo , Glicoproteínas/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
18.
ACS Med Chem Lett ; 11(12): 2544-2552, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33335678

RESUMEN

A series of amide tethered 4-aminoquinoline-naphthalimide hybrids has been synthesized to assess their in vitro antiplasmodial potential against chloroquine-susceptible (3D7) and chloroquine-resistant (W2) strains of Plasmodium falciparum. The most active and noncytotoxic compound had an IC50 value of 0.07 µM against W2 strain and was more active than standard antimalarial drugs, including chloroquine, desethylamodiaquine, and quinine, particularly for drug resistant malaria. The promising scaffold, when subjected to heme binding and molecular modeling studies, was identified as a possible potent inhibitor of hemozoin formation and P. falciparum chloroquine resistance transporter (PfCRT), respectively, and, therefore, could act as a dual function antiplasmodial.

19.
Future Med Chem ; 12(3): 193-205, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802710

RESUMEN

Aim: WHO Malaria report 2017 estimated 216 million cases of malaria and 445,000 deaths worldwide, with 91% of deaths affecting the African region. Results/methodology: Microwave promoted the synthesis of cycloalkyl amine substituted isoindoline-1,3-dione-4-aminoquinolines was urbanized for evaluating their antiplasmodial activities. Compound with the optimum combination of propyl chain length and hydroxyethyl piperazine proved to be the most potent among the synthesized scaffolds against chloroquine-resistant W2 strain of Plasmodium falciparum with an IC50 value of 0.006 µM. Heme-binding along with density functional theory studies were further carried out in order to delineate the mechanism of action of the most active compound. Conclusion: The synthesized scaffold can act as a therapeutic template for further synthetic modifications toward the search for a new antimalarial agent.


Asunto(s)
Aminoquinolinas/farmacología , Antimaláricos/farmacología , Teoría Funcional de la Densidad , Isoindoles/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Aminoquinolinas/síntesis química , Aminoquinolinas/química , Antimaláricos/síntesis química , Antimaláricos/química , Sitios de Unión/efectos de los fármacos , Diseño de Fármacos , Hemo/química , Humanos , Isoindoles/síntesis química , Isoindoles/química , Microondas , Estructura Molecular , Pruebas de Sensibilidad Parasitaria
20.
Eur J Med Chem ; 152: 436-488, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29751237

RESUMEN

Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Inhibidores Enzimáticos/química , Fructosa-Bifosfatasa/antagonistas & inhibidores , Fructosa-Bifosfatasa/metabolismo , Humanos , Hipoglucemiantes/química , PPAR gamma/antagonistas & inhibidores , PPAR gamma/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/antagonistas & inhibidores , Receptores de Glucagón/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA