Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 27(11): 1247-59, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23723416

RESUMEN

Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.


Asunto(s)
Empalme Alternativo , Diferenciación Celular/genética , Músculos/citología , Músculos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Animales , Inmunoprecipitación de Cromatina , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Exones/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Factores de Transcripción MEF2 , Ratones , Músculos/enzimología , Mutación/genética , Factores Reguladores Miogénicos/química , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Fosforilación/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
2.
Int J Mol Sci ; 21(3)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033454

RESUMEN

Transforming growth factor ß (TGFß) is a pluripotent cytokine and regulates a myriad of biological processes. It has been established that TGFß potently inhibits skeletal muscle differentiation; however, the molecular mechanism is not clearly defined. Previously, we reported that inhibition of the TGFß canonical pathway by an inhibitory Smad, Smad7, does not reverse this effect on differentiation, suggesting that activation of receptor Smads (R-Smads) by TGFß is not responsible for repression of myogenesis. In addition, pharmacological blockade of Smad3 activation by TGFß did not reverse TGFß's inhibitory effect on myogenesis. In considering other pathways, we observed that TGFß potently activates MEK/ERK, and a pharmacological inhibitor of MEK reversed TGFß's inhibitory effect on myogenesis, as indicated by a myogenin promoter-reporter gene, sarcomeric myosin heavy chain accumulation, and phenotypic myotube formation. Furthermore, we found that c-Jun, a known potent repressor of myogenesis, which is coincidently also a down-stream target of MEK/ERK signaling, was phosphorylated and accumulates in the nucleus in response to TGFß activation. Taken together, these observations support a model in which TGFß activates a MEK/ERK/c-Jun pathway to repress skeletal myogenesis, maintaining the pluripotent undifferentiated state in myogenic progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Desarrollo de Músculos/fisiología , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Núcleo Celular/metabolismo , Citocinas/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Miogenina/metabolismo , Fosforilación/fisiología , Células Madre/fisiología , Transactivadores/metabolismo
3.
Hum Mol Genet ; 26(4): 753-767, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040729

RESUMEN

Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Homeodominio , Repeticiones de Microsatélite , Distrofia Muscular Facioescapulohumeral , Complejo Represivo Polycomb 1 , Línea Celular , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo
4.
EMBO J ; 29(8): 1401-11, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20300060

RESUMEN

Polycomb (PcG) and Trithorax (TrxG) group proteins act antagonistically to establish tissue-specific patterns of gene expression. The PcG protein Ezh2 facilitates repression by catalysing histone H3-Lys27 trimethylation (H3K27me3). For expression, H3K27me3 marks are removed and replaced by TrxG protein catalysed histone H3-Lys4 trimethylation (H3K4me3). Although H3K27 demethylases have been identified, the mechanism by which these enzymes are targeted to specific genomic regions to remove H3K27me3 marks has not been established. Here, we demonstrate a two-step mechanism for UTX-mediated demethylation at muscle-specific genes during myogenesis. Although the transactivator Six4 initially recruits UTX to the regulatory region of muscle genes, the resulting loss of H3K27me3 marks is limited to the region upstream of the transcriptional start site. Removal of the repressive H3K27me3 mark within the coding region then requires RNA Polymerase II (Pol II) elongation. Interestingly, blocking Pol II elongation on transcribed genes leads to increased H3K27me3 within the coding region, and formation of bivalent (H3K27me3/H3K4me3) chromatin domains. Thus, removal of repressive H3K27me3 marks by UTX occurs through targeted recruitment followed by spreading across the gene.


Asunto(s)
Histonas/metabolismo , Desarrollo de Músculos , Proteínas Nucleares/metabolismo , Animales , Línea Celular , Creatina Quinasa/metabolismo , Genes , Histona Demetilasas/metabolismo , Proteínas de Homeodominio/metabolismo , Metilación , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Miogenina/genética , ARN Polimerasa II/antagonistas & inhibidores , ARN Polimerasa II/metabolismo , Transactivadores/metabolismo
5.
Dev Biol ; 332(1): 116-30, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19464283

RESUMEN

Menin plays an established role in the differentiation of mesenchymal cells to the osteogenic lineage. Conversely, whether Menin influences the commitment of mesenschymal cells to the myogenic lineage, despite expression in the developing somite was previously unclear. We observed that Menin is down-regulated in C2C12 and C3H10T1/2 mesenchymal cells when muscle differentiation is induced. Moreover, maintenance of Menin expression by constitutive ectopic expression inhibited muscle cell differentiation. Reduction of Menin expression by siRNA technology results in precocious muscle differentiation and concomitantly attenuates BMP-2 induced osteogenesis. Reduced Menin expression antagonizes BMP-2 and TGF-beta1 mediated inhibition of myogenesis. Furthermore, Menin was found to directly interact with and potentiate the transactivation properties of Smad3 in response to TGF-beta1. Finally in concert with these observations, tissue-specific inactivation of Men1 in Pax3-expressing somite precursor cells leads to a patterning defect of rib formation and increased muscle mass in the intercostal region. These data invoke a pivotal role for Menin in the competence of mesenchymal cells to respond to TGF-beta1 and BMP-2 signals. Thus, by modulating cytokine responsiveness Menin functions to alter the balance of multipotent mesenchymal cell commitment to the osteogenic or myogenic lineages.


Asunto(s)
Linaje de la Célula , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Desarrollo de Músculos/genética , Osteogénesis/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Eliminación de Gen , Humanos , Músculos Intercostales/anatomía & histología , Músculos Intercostales/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Desarrollo de Músculos/efectos de los fármacos , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , Proteína smad3/metabolismo , Somitos/citología , Somitos/efectos de los fármacos , Somitos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Mol Cell Biol ; 26(16): 6248-60, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16880533

RESUMEN

Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Proteína smad7/metabolismo , Receptores de Activinas Tipo II/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Genes Dominantes , Ratones , Modelos Biológicos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mutación/genética , Proteína MioD/metabolismo , Mioblastos/citología , Miostatina , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Interferente Pequeño/genética , Factor de Crecimiento Transformador beta/metabolismo
7.
PLoS One ; 8(6): e67762, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840772

RESUMEN

Quiescent satellite cells are myogenic progenitors that enable regeneration of skeletal muscle. One of the early events of satellite cell activation following myotrauma is the induction of the myogenic regulatory factor MyoD, which eventually induces terminal differentiation and muscle function gene expression. The purpose of this study was to elucidate the mechanism by which MyoD is induced during activation of satellite cells in mouse muscle undergoing regeneration. We show that Six1, a transcription factor essential for embryonic myogenesis, also regulates MyoD expression in muscle progenitor cells. Six1 knock-down by RNA interference leads to decreased expression of MyoD in myoblasts. Chromatin immunoprecipitation assays reveal that Six1 binds the Core Enhancer Region of MyoD. Further, transcriptional reporter assays demonstrate that Core Enhancer Region reporter gene activity in myoblasts and in regenerating muscle depends on the expression of Six1 and on Six1 binding sites. Finally, we provide evidence indicating that Six1 is required for the proper chromatin structure at the Core Enhancer Region, as well as for MyoD binding at its own enhancer. Together, our results reveal that MyoD expression in satellite cells depends on Six1, supporting the idea that Six1 plays an important role in adult myogenesis, in addition to its role in embryonic muscle formation.


Asunto(s)
Proteínas de Homeodominio/genética , Músculo Esquelético/fisiología , Proteína MioD/genética , Células Satélite del Músculo Esquelético/fisiología , Células Madre/fisiología , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cromatina/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Mioblastos/metabolismo , Mioblastos/fisiología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Regeneración/genética , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Stem Cell Rev Rep ; 8(2): 609-22, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22278133

RESUMEN

Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.


Asunto(s)
Linaje de la Célula , Células Satélite del Músculo Esquelético/citología , Tipificación del Cuerpo , Humanos , Medicina Regenerativa , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal , Nicho de Células Madre
9.
Epigenetics ; 5(8): 691-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20716948

RESUMEN

MyoD is a master regulator of the skeletal muscle gene expression program. ChIP-Seq analysis has recently revealed that MyoD binds to a large number of genomic loci in differentiating myoblasts, yet only activates transcription at a subset of these genes. Here we discuss recent data suggesting that the ability of MyoD to mediate gene expression is regulated through the function of Polycomb and Trithorax Group proteins. Based on studies of the muscle-specific myog gene, we propose a model where the transcriptional activators Mef2d and Six4 mediate recruitment of Trithorax Group proteins Ash2L/MLL2 and UTX to MyoD-bound promoters to overcome the Polycomb-mediated repression of muscle genes. Modulation of the interaction between Ash2L/MLL2 and Mef2d by the p38α MAPK signaling pathway in turns provides fine-tuning of the muscle-specific gene expression program. Thus Mef2d, Six4, and p38α MAPK function coordinately as regulators of a master regulator to mediate expression of MyoD target genes.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Músculo Esquelético/metabolismo , Proteína MioD/biosíntesis , Animales , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sitios Genéticos/fisiología , Histona Demetilasas , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Factores de Transcripción MEF2 , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína MioD/genética , Mioblastos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Miogenina/genética , Miogenina/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos/fisiología , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Biol Chem ; 284(29): 19679-93, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19439412

RESUMEN

Skeletal myogenesis is potently regulated by the extracellular milieu of growth factors and cytokines. We observed that cardiotrophin-1 (CT-1), a member of the interleukin-6 (IL-6) family of cytokines, is a potent regulator of skeletal muscle differentiation. The normal up-regulation of myogenic marker genes, myosin heavy chain (MyHC), myogenic regulatory factors (MRFs), and myocyte enhancer factor 2s (MEF2s) were inhibited by CT-1 treatment. CT-1 also represses myogenin (MyoG) promoter activation. CT-1 activated two signaling pathways: signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase kinase (MEK), a component of the extracellular signal-regulated MAPK (ERK) pathway. In view of the known connection between CT-1 and STAT3 activation, we surprisingly found that pharmacological blockade of STAT3 activity had no effect on the inhibition of myogenesis by CT-1 suggesting that STAT3 signaling is dispensable for myogenic repression. Conversely, MEK inhibition potently reversed the inhibition of myotube formation and attenuated the repression of MRF transcriptional activity mediated by CT-1. Taken together, these data indicate that CT-1 represses skeletal myogenesis through interference with MRF activity by activation of MEK/ERK signaling. In agreement with these in vitro observations, exogenous systemic expression of CT-1 mediated by adenoviral vector delivery increased the number of myonuclei in normal post-natal mouse skeletal muscle and also delayed skeletal muscle regeneration induced by cardiotoxin injection. The expression pattern of CT-1 in embryonic and post-natal skeletal muscle and in vivo effects of CT-1 on myogenesis implicate CT-1 in the maintenance of the undifferentiated state in muscle progenitor cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Citocinas/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Animales , Western Blotting , Butadienos/farmacología , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunoprecipitación , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 1/metabolismo , Ratones , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección
11.
Mol Cell Biol ; 28(9): 2952-70, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18299387

RESUMEN

Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Células Musculares/citología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Factores Reguladores Miogénicos/fisiología , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Histona Desacetilasas/fisiología , Factores de Transcripción MEF2 , Ratones , Datos de Secuencia Molecular , Células Musculares/fisiología , Músculo Esquelético/citología , Mutagénesis Sitio-Dirigida , Fosforilación , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Gastrointest Endosc ; 62(2): 245-50, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16046988

RESUMEN

BACKGROUND: Pancreatitis is the most common major complication of ERCP. Efforts have been made to identify pharmacologic agents capable of reducing its incidence and severity. The aim of this trial was to determine whether prophylactic allopurinol, an inhibitor of oxygen-derived free radical production, would reduce the frequency and severity of post-ERCP pancreatitis. Methods A total of 701 patients were randomized to receive either allopurinol or placebo 4 hours and 1 hour before ERCP. A database was prospectively collected by a defined protocol on patients who underwent ERCP. Standardized criteria were used to diagnose and grade the severity of postprocedure pancreatitis. RESULTS: The groups were similar with regard to patient demographics and to patient and procedure risk factors for pancreatitis. The overall incidence of pancreatitis was 12.55%. It occurred in 46 of 355 patients in the allopurinol group (12.96%) and in 42 of 346 patients in the control group (12.14%; p = 0.52). The pancreatitis was graded mild in 7.89%, moderate in 4.51%, and severe in 0.56% of the allopurinol group, and mild in 6.94%, moderate in 4.62%, and severe in 0.58% of the control group. There was no significant difference between the groups in the frequency or the severity of pancreatitis. CONCLUSIONS: Prophylactic oral allopurinol did not reduce the frequency or the severity of post-ERCP pancreatitis.


Asunto(s)
Alopurinol/administración & dosificación , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Depuradores de Radicales Libres/administración & dosificación , Pancreatitis/prevención & control , Administración Oral , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pancreatitis/etiología , Estudios Prospectivos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA