Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 294: 112984, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34098152

RESUMEN

Diatomite/kaolinite-based geopolymer (GP) was synthesized and incorporated in zeolitization process (Z/GP) to investigate the role of the zeolite phases in inducing its retention capacity of the dissolved Sr (II) ions in water. The retention of Sr (II) ions using Z/GP in comparison with GP was evaluated based on both batch and fixed-bed column studies. In the batch study, the zeolitized geopolymer (Z/GP) shows enhancement in the Sr (II) retention capacity (193.7 mg/g) as compared to the normal geopolymer (102 mg/g). Moreover, the recyclability studies demonstrate higher stability for Z/GP than GP with a retention percentage higher than 90% for five reusing runs. The kinetic and the equilibrium properties of the occurred Sr (II) retention reactions follow the assumption of the Pseudo-Second order model (R2 > 0.96) and Langmuir model (R2 > 0.97), respectively. The Gaussian energies (15.4 kJ/mol (GP) and 11.47 kJ/mol (Z/GP)) related to retention mechanism of chemical type and within the suggested range for the zeolitic ion exchange processes. The Sr (II) retention reactions by GP and Z/GP are of spontaneous and exothermic properties which qualifies the products to be used at low-temperature conditions (20 °C). The column studies also declared higher performance for the Z/GP fixed bed as compared to the normal GP bed considering the total Sr (II) retention percentage (72.9%), treated volume (8 L), saturation time (1620 min), and a maximum capacity of Z/GP particles in the bed (567.6 mg/g).


Asunto(s)
Caolín , Contaminantes Químicos del Agua , Adsorción , Tierra de Diatomeas , Concentración de Iones de Hidrógeno , Iones , Cinética , Termodinámica , Contaminantes Químicos del Agua/análisis
2.
J Environ Manage ; 300: 113723, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34521003

RESUMEN

Zeolite impeded geopolymer (Z/G) was synthesized from natural kaolinite and diatomite. The structure (Z/G) was characterized as an enhanced adsorbent for PO43- and NH4+ ions from aqueous solutions, groundwater, and sewage water. The synthetic Z/G structure exhibits sequestration capacities of 206 mg/g and 140 mg/g for PO43- and NH4+, respectively which are higher values than the recognized results for the geopolymer and other adsorbents in literature. The sequestration reactions of PO43- and NH4+ by Z/G are of Pseudo-Second order kinetic behavior considering both the Chi-squared (χ2) and correlation coefficient (R2) values. The sequestration reactions occur in homogenous and monolayer forms considering their agreement with Langmuir behavior. The Gaussian energies (12.4 kJ/mol (PO43-) and 10.47 kJ/mol (NH4+)) demonstrate the operation of a chemical sequestration mechanism that might be involved zeolitic ion exchange process and chemical complexation. Additionally, these reactions are exothermic processes of spontaneous and favorable properties based on thermodynamic studies. The Z/G structure is of significant affinity for both PO43- and NH4+ even in the existence of other anions as Cl-, HCO3-, SO42-, and NO3-. Finally, the structure used effectively in the purification of groundwater and sewage water from PO43- and NH4+ in addition to nitrate, sulfate, and some metal ions.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Zeolitas , Adsorción , Iones , Cinética , Fosfatos , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Pollut Res Int ; 30(19): 56920-56929, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36930304

RESUMEN

The soft-bodied corals of the genera Sarcophyton and Sinularia (Alcyoniidae) are known as a warehouse of casbane and cembranoid diterpenoids with remarkable antitumor effects. Two casbane-type diterpenoids (1, 2) along with four cembrane-type diterpenoids (3-6) were isolated from the diethyl ether soluble fraction of the organic extracts of the Red Sea soft corals Sinularia leptoclados and Sarcophyton glaucum, respectively. The antiproliferative activity of all isolated compounds (1-6) against three hepatocellular carcinoma cells, namely, Huh-7, SNU 499, and HepG2, along with the normal cells EA.hy 926, was evaluated. Sinueracabanone D (1) displayed a remarkable antiproliferative effect against the examined cancer cell lines, especially HepG2 cells with IC50 of 4.0 ± 0.37 µM. Cell cycle analysis indicated compound 1 caused the accumulation of HepG2 cells in the G2/M-phase. Further, compound 1 exhibited significant pro-apoptotic activities in HepG2 cells as evidenced by annexin V staining, enhanced mRNA expression of Bax, cytochrome C, and caspase 3, as well as inhibition of Bcl2 expression. Also, challenging HepG2 cells with sinueracabanone D (1) enhanced the active oxygen species generation and decreased mitochondrial membrane potential. In conclusion, compound 1 possesses potent antiproliferative activities against HepG2 cells. These antiproliferative activities are mediated, at least partly, by their ability to induce apoptosis, mitochondrial dysfunction, and oxidative stress.


Asunto(s)
Antozoos , Carcinoma Hepatocelular , Diterpenos , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Línea Celular Tumoral , Apoptosis , Diterpenos/farmacología , Proliferación Celular
4.
Sci Rep ; 12(1): 6565, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449436

RESUMEN

The study used a one-step hydrothermal method to prepare Fe3O4-FeVO4 and xRGO/Fe3O4-FeVO4 nanocomposites. XRD, TEM, EDS, XPS, DRS, and PL techniques were used to examine the structurally and morphologically properties of the prepared samples. The XRD results appeared that the Fe3O4-FeVO4 has a triclinic crystal structure. Under hydrothermal treatment, (GO) was effectively reduced to (RGO) as illustrated by XRD and XPS results. UV-Vis analysis revealed that the addition of RGO enhanced the absorption in the visible region and narrowed the band gap energy. The photoactivities of the prepared samples were evaluated by degrading methylene blue (MB), phenol and brilliant green under sunlight illumination. As indicated by all the nanocomposites, photocatalytic activity was higher than the pure Fe3O4-FeVO4 photocatalyst, and the highest photodegradation efficiency of MB and phenol was shown by the 10%RGO/Fe3O4-FeVO4. In addition, the study examined the mineralization (TOC), photodegradation process, and photocatalytic reaction kinetics of MB and phenol.


Asunto(s)
Nanocompuestos , Luz Solar , Grafito/química , Iluminación , Azul de Metileno/química , Nanocompuestos/química , Fenol/química
5.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35745905

RESUMEN

A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved an As (V) retention capacity (213 mg/g) higher than BE (72.7 mg/g) and PN/BE (119.8 mg/g). The enhanced capacity of G.Zn@PN/BE was studied using classic (Langmuir) and advanced equilibrium (monolayer model of one energy) models. Considering the steric properties, the structure of G.Zn@PN/BE demonstrated a higher density of active sites (Nm = 109.8 (20 °C), 108.9 (30 °C), and 67.8 mg/g (40 °C)) than BE and PN/BE. This declared the effect of the integration process in inducing the retention capacity by increasing the quantities of the active sites. The number of adsorbed As (V) ions per site (1.76 up to 2.13) signifies the retention of two or three ions per site by a multi-ionic mechanism. The adsorption energies (from -3.07 to -3.26 kJ/mol) suggested physical retention mechanisms (hydrogen bonding and dipole bonding forces). The adsorption energy, internal energy, and free enthalpy reflected the exothermic, feasible, and spontaneous nature of the retention process. The structure is of significant As (V) uptake capacity in the existence of competitive anions or metal ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA