Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Foods ; 13(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38201061

RESUMEN

The essential oil of Pelargonium graveolens (PGEO) is identified in the literature as a rich source of bioactive compounds with a high level of biological activity. This study aimed to examine the chemical profile of PGEO as well as its antioxidant, antibacterial, antibiofilm, and insecticidal properties. Its chemical composition was analyzed using gas chromatography-mass spectrometry (GC-MS), achieving comprehensive identification of 99.2% of volatile compounds. The predominant identified compounds were ß-citronellol (29.7%) and geraniol (14.6%). PGEO's antioxidant potential was determined by means of DPPH radical and ABTS radical cation neutralization. The results indicate a higher capacity of PGEO to neutralize the ABTS radical cation, with an IC50 value of 0.26 ± 0.02 mg/mL. Two techniques were used to assess antimicrobial activity: minimum inhibitory concentration (MIC) and disk diffusion. Antimicrobial evaluation using the disk diffusion method revealed that Salmonella enterica (14.33 ± 0.58 mm), which forms biofilms, and Priestia megaterium (14.67 ± 0.58 mm) were most susceptible to exposure to PGEO. The MIC assay demonstrated the highest performance of this EO against biofilm-forming S. enterica (MIC 50 0.57 ± 0.006; MIC 90 0.169 ± 0.08 mg/mL). In contrast to contact application, the assessment of the in situ vapor phase antibacterial activity of PGEO revealed significantly more potent effects. An analysis of antibiofilm activity using MALDI-TOF MS demonstrated PGEO's capacity to disrupt the biofilm homeostasis of S. enterica growing on plastic and stainless steel. Additionally, insecticidal evaluations indicated that treatment with PGEO at doses of 100% and 50% resulted in the complete mortality of all Harmonia axyridis individuals.

2.
Plants (Basel) ; 12(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37176847

RESUMEN

In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha-1 to 3.29 t ha-1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.

3.
Saudi J Biol Sci ; 29(9): 103371, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35865322

RESUMEN

The Carabidae (Coleoptera) are a useful tool for monitoring the effects of different types of control and theretofore it is important to highlight about their role as possible ecological indicators. We studied the composition of carabids in ecological and integrated farming, in three different crops in southern Slovakia. The ground beetles were caught using pitfall traps during a period of three years, from 2018 to 2020. 7 801 adult carabids belonging to 26 species were collected and recorded altogether. The number of species varied from 11 to 15 between traps. The distribution and number of individuals were positively influenced by ecological management with the amount of 4784 individuals, compared to integrated management, where 3017 individuals were obtained. The influence of the crops was in the following order: Triticum aestivum, Pisum sativum and Medicago sativa. In both farming systems, representatives of the Carabidae family were almost the same species. The most abundant species of the pooled number was Harpalus rufipes (from 61.16 to 88.08%). Brachinus crepitans also dominated (from 5.98 to 16.47%). Other species were Poecilus cupreus, Anchomenus dorsalis, Brachinus explodens. The species identity index according to Jaccard when comparing both farming types for the observed period reached 60.00%. The average comparison of the identity of dominance for the observed period of ecological vs integrated management represents 90.39%. The Shannon-Weaver diversity index for ecological farming was 0.9957 and 1.0184 for integrated farming.

4.
Insects ; 13(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36005303

RESUMEN

Arthropods are reported to serve as vectors of transmission of pathogenic microorganisms to humans, animals, and the environment. The aims of our study were (i) to identify the external bacteriota of spiders inhabiting a chicken farm and slaughterhouse and (ii) to detect antimicrobial resistance of the isolates. In total, 102 spiders of 14 species were collected from a chicken farm, slaughterhouse, and buildings located in west Slovakia in 2017. Samples were diluted in peptone buffered water, and Tryptone Soya Agar (TSA), Triple Sugar Agar (TSI), Blood Agar (BA), and Anaerobic Agar (AA) were used for inoculation. A total of 28 genera and 56 microbial species were isolated from the samples. The most abundant species were Bacillus pumilus (28 isolates) and B. thuringensis (28 isolates). The least isolated species were Rhodotorula mucilaginosa (one isolate), Kocuria rhizophila (two isolates), Paenibacillus polymyxa (two isolates), and Staphylococcus equorum (two isolates). There were differences in microbial composition between the samples originating from the slaughterhouse, chicken farm, and buildings. The majority of the bacterial isolates resistant to antibiotics were isolated from the chicken farm. The isolation of potentially pathogenic bacteria such as Salmonella, Escherichia, and Salmonella spp., which possess multiple drug resistance, is of public health concern.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA