Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Aging Cell ; 23(4): e14101, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38414315

RESUMEN

Epigenetic clocks can measure aging and predict the incidence of diseases and mortality. Higher levels of physical fitness are associated with a slower aging process and a healthier lifespan. Microbiome alterations occur in various diseases and during the aging process, yet their relation to epigenetic clocks is not explored. To fill this gap, we collected metagenomic (from stool), epigenetic (from blood), and exercise-related data from physically active individuals and, by applying epigenetic clocks, we examined the relationship between gut flora, blood-based epigenetic age acceleration, and physical fitness. We revealed that an increased entropy in the gut microbiome of physically active middle-aged/old individuals is associated with accelerated epigenetic aging, decreased fitness, or impaired health status. We also observed that a slower epigenetic aging and higher fitness level can be linked to altered abundance of some bacterial species often linked to anti-inflammatory effects. Overall our data suggest that alterations in the microbiome can be associated with epigenetic age acceleration and physical fitness.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Persona de Mediana Edad , Microbioma Gastrointestinal/genética , Aptitud Física , Microbiota/genética , Aceleración , Envejecimiento/genética , Epigénesis Genética , Metilación de ADN
2.
Geroscience ; 45(5): 2805-2817, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37209203

RESUMEN

DNAmPhenoAge, DNAmGrimAge, and the newly developed DNAmFitAge are DNA methylation (DNAm)-based biomarkers that reflect the individual aging process. Here, we examine the relationship between physical fitness and DNAm-based biomarkers in adults aged 33-88 with a wide range of physical fitness (including athletes with long-term training history). Higher levels of VO2max (ρ = 0.2, p = 6.4E - 4, r = 0.19, p = 1.2E - 3), Jumpmax (p = 0.11, p = 5.5E - 2, r = 0.13, p = 2.8E - 2), Gripmax (ρ = 0.17, p = 3.5E - 3, r = 0.16, p = 5.6E - 3), and HDL levels (ρ = 0.18, p = 1.95E - 3, r = 0.19, p = 1.1E - 3) are associated with better verbal short-term memory. In addition, verbal short-term memory is associated with decelerated aging assessed with the new DNAm biomarker FitAgeAcceleration (ρ: - 0.18, p = 0.0017). DNAmFitAge can distinguish high-fitness individuals from low/medium-fitness individuals better than existing DNAm biomarkers and estimates a younger biological age in the high-fit males and females (1.5 and 2.0 years younger, respectively). Our research shows that regular physical exercise contributes to observable physiological and methylation differences which are beneficial to the aging process. DNAmFitAge has now emerged as a new biological marker of quality of life.


Asunto(s)
Metilación de ADN , Calidad de Vida , Masculino , Femenino , Humanos , Envejecimiento/genética , Ejercicio Físico , Biomarcadores
3.
Sports Med Health Sci ; 3(1): 40-45, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35782677

RESUMEN

Blood flow restriction (BFR) during exercise bouts has been used to induce hypertrophy of skeletal muscle, even with low loads. However, the effects of BFR during the rest periods between sets are not known. We have tested the hypothesis that BFR during rest periods between sets of high-intensity resistance training would enhance performance. Twenty-two young adult male university students were recruited for the current study, with n = 11 assigned to BFR and n = 11 to a control group. The results revealed that four weeks training at 70% of 1 RM, five sets and 10 repetitions, three times a week with and without BFR, resulted in similar progress in maximal strength and in the number of maximal repetitions. The miR-1 and miR-133a decreased significantly in the vastus lateralis muscle of BFR group compared to the group without BFR, while no significant differences in the levels of miR133b, miR206, miR486, and miR499 were found between groups. In conclusion, it seems that BFR restrictions during rest periods of high-intensity resistance training, do not provide benefit for enhanced performance after a four-week training program. However, BFR-induced downregulation of miR-1 and miR-133a might cause different adaptive responses of skeletal muscle to high intensity resistance training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA