Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cell Mol Med ; 25(18): 9011-9027, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34414662

RESUMEN

Excitotoxic events underlying ischaemic and traumatic brain injuries activate degenerative and protective pathways, particularly in the hippocampus. To understand opposing pathways that determine the brain's response to excitotoxicity, we used hippocampal explants, thereby eliminating systemic variables during a precise protocol of excitatory stimulation. N-methyl-d-aspartate (NMDA) was applied for 20 min and total RNA isolated one and 24 h later for neurobiology-specific microarrays. Distinct groups of genes exhibited early vs. delayed induction, with 63 genes exclusively reduced 24-h post-insult. Egr-1 and NOR-1 displayed biphasic transcriptional modulation: early induction followed by delayed suppression. Opposing events of NMDA-induced genes linked to pathogenesis and cell survival constituted the early expression signature. Delayed degenerative indicators (up-regulated pathogenic genes, down-regulated pro-survival genes) and opposing compensatory responses (down-regulated pathogenic genes, up-regulated pro-survival genes) generated networks with temporal gene profiles mirroring coexpression network clustering. We then used the expression profiles to test whether NF-κB, a potent transcription factor implicated in both degenerative and protective pathways, is involved in the opposing responses. The NF-κB inhibitor MG-132 indeed altered NMDA-mediated transcriptional changes, revealing components of opposing expression signatures that converge on the single response element. Overall, this study identified counteracting avenues among the distinct responses to excitotoxicity, thereby suggesting multi-target treatment strategies and implications for predictive medicine.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , N-Metilaspartato , FN-kappa B/metabolismo , Sustancias Protectoras , Animales , N-Metilaspartato/administración & dosificación , N-Metilaspartato/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley
2.
Bioorg Med Chem ; 27(23): 115096, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31629610

RESUMEN

FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Piperazina/farmacología , Piperidinas/farmacología , Amidohidrolasas/metabolismo , Animales , Diseño de Fármacos , Inhibidores Enzimáticos/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/química , Piperazina/análogos & derivados , Piperidinas/química , Ratas
3.
Int J Mol Sci ; 20(18)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31505809

RESUMEN

Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid ß 42 (Aß42) degradation product Aß38, and this indicator of Aß42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aß42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aß deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Lisosomas/patología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Sinapsis/metabolismo , Sinapsis/patología
4.
Ageing Res Rev ; 93: 102162, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070831

RESUMEN

Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Deficiencias en la Proteostasis , Humanos , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/complicaciones , Proteostasis , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Estilo de Vida
5.
J Biol Chem ; 287(9): 6084-8, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22253440

RESUMEN

The oligomerization of the amyloid-ß protein (Aß) is an important event in Alzheimer disease (AD) pathology. Developing small molecules that disrupt formation of early oligomeric states of Aß and thereby reduce the effective amount of toxic oligomers is a promising therapeutic strategy for AD. Here, mass spectrometry and ion mobility spectrometry were used to investigate the effects of a small molecule, Z-Phe-Ala-diazomethylketone (PADK), on the Aß42 form of the protein. The mass spectrum of a mixture of PADK and Aß42 clearly shows that PADK binds directly to Aß42 monomers and small oligomers. Ion mobility results indicate that PADK not only inhibits the formation of Aß42 dodecamers, but also removes preformed Aß42 dodecamers from the solution. Electron microscopy images show that PADK inhibits Aß42 fibril formation in the solution. These results are consistent with a previous study that found that PADK has protective effects in an AD transgenic mouse model. The study of PADK and Aß42 provides an example of small molecule therapeutic development for AD and other amyloid diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Diazometano/análogos & derivados , Diseño de Fármacos , Fragmentos de Péptidos/química , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Animales , Diazometano/química , Diazometano/farmacología , Dimerización , Modelos Animales de Enfermedad , Humanos , Espectrometría de Masas , Ratones , Microscopía Electrónica , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Solubilidad/efectos de los fármacos
6.
Biochim Biophys Acta ; 1812(12): 1664-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21978994

RESUMEN

Synaptic pathology in Alzheimer's disease brains is thought to involve soluble Aß42 peptide. Here, sterile incubation in PBS caused small Aß42 oligomer formation as well as heterogeneous, 6E10-immunopositive aggregates of 80-100kDa. The high molecular weight aggregates (H-agg) formed in a time-dependent manner over an extended 30-day period. Interestingly, an inverse relationship between dimeric and H-agg formation was more evident when incubations were performed at 37°C as compared to 23°C, thus providing an experimental strategy with which to address synaptic compromise produced by the different Aß aggregates. H-agg species formed faster and to higher levels at 37°C compared to 23°C, and the two aggregate preparations were evaluated in hippocampal slice cultures, a sensitive system for monitoring synaptic integrity. Applied daily at 80-600nM for 7days, the Aß42 preparations caused dose-dependent and aggregation-dependent declines in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits as well as in presynaptic components. Unlike the synaptic effects, Aß42 induced only trace cellular degeneration that was CA1 specific. The 37°C preparation was less effective at decreasing synaptic markers, corresponding with its reduced levels of Aß42 monomers and dimers. Aß42 dimers decayed significantly faster at 37°C than 23°C, and more rapidly than monomers at either temperature. These findings indicate that Aß42 can self-aggregate into potent synaptotoxic oligomers as well as into larger aggregates that may serve to neutralize the toxic formations. These results will add to the growing debate concerning whether high molecular weight Aß complexes that form amyloid plaques are protective through the sequestration of oligomeric species.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Hipocampo/metabolismo , Fragmentos de Péptidos/farmacología , Terminales Presinápticos/metabolismo , Receptores de Glutamato/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/fisiología , Análisis de Varianza , Animales , Biomarcadores/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Cinética , Peso Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Técnicas de Cultivo de Tejidos
7.
Neurobiol Dis ; 44(3): 292-303, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21807096

RESUMEN

Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters (VGLUTs), and alterations in the transporters expression directly regulate neurotransmitter release. We investigated changes in VGLUT1 and VGLUT2 protein levels after ischemic and excitotoxic insults. The results show that VGLUT2 is cleaved by calpains after excitotoxic stimulation of hippocampal neurons with glutamate, whereas VGLUT1 is downregulated to a lower extent. VGLUT2 was also cleaved by calpains after oxygen/glucose deprivation (OGD), and downregulated after middle cerebral artery occlusion (MCAO) and intrahippocampal injection of kainate. In contrast, VGLUT1 was not affected after OGD. Incubation of isolated synaptic vesicles with recombinant calpain also induced VGLUT2 cleavage, with a little effect observed for VGLUT1. N-terminal sequencing analysis showed that calpain cleaves VGLUT2 in the C-terminus, at Asn(534) and Lys(542). The truncated GFP-VGLUT2 forms were found to a great extent in non-synaptic regions along neurites, when compared to GFP-VGLUT2. These findings show that excitotoxic and ischemic insults downregulate VGLUT2, which is likely to affect glutamatergic transmission and cell death, especially in the neonatal period when the transporter is expressed at higher levels.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Neuronas/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Calpaína/farmacología , Caspasa 3/metabolismo , Células Cultivadas , Embrión de Mamíferos , Glucosa/deficiencia , Hipocampo/citología , Hipoxia/patología , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratas , Ratas Wistar , Vesículas Sinápticas/efectos de los fármacos , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
8.
Brain Pathol ; 31(3): e12936, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629462

RESUMEN

Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.


Asunto(s)
Traumatismos por Explosión/patología , Demencia/patología , Hipocampo/patología , Personal Militar/psicología , Astrocitos/patología , Traumatismos por Explosión/metabolismo , Traumatismos por Explosión/psicología , Lesiones Encefálicas/patología , Trastornos del Conocimiento/patología , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/patología
9.
Brain Behav Immun ; 24(5): 822-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19782128

RESUMEN

Apoptosis-related mechanisms are important in the pathophysiology of hypoxic-ischemic injury in the neonatal brain. Caspases are the major executioners of apoptosis, but there are a number of upstream players that influence the cell death pathways. The Bcl-2 family proteins are important modulators of mitochondrial permeability, working either to promote or prevent apoptosis. In this study we focused on the anti-apoptotic Bcl-2 protein after neonatal cerebral hypoxia-ischemia (HI) in 8-day-old rats. Bcl-2 translocated to nuclei and accumulated there over the first 24h of reperfusion after HI, as judged by immunohistochemistry and immuno-electron microscopy. We also found that the total level of Bcl-2 decreased after HI in vivo and after ionophore challenge in cultured human neuroblastoma (IMR-32) cells in vitro. Furthermore, the Bcl-2 reduction was calpain-dependent, because it could be prevented by the calpain inhibitor CX295 both in vivo and in vitro, suggesting cross-talk between excitotoxic and apoptotic mechanisms.


Asunto(s)
Apoptosis/fisiología , Calpaína/metabolismo , Núcleo Celular/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transporte Activo de Núcleo Celular , Análisis de Varianza , Animales , Animales Recién Nacidos , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Masculino , Microscopía Inmunoelectrónica , Ratas , Ratas Wistar , Proteína X Asociada a bcl-2/metabolismo
10.
Int Rev Neurobiol ; 154: 303-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32739009

RESUMEN

The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aß42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus/metabolismo , Ejercicio Físico , Lisosomas/metabolismo , Enfermedades Metabólicas/metabolismo , Redes y Vías Metabólicas , Obesidad/metabolismo , Proteostasis , Sinucleinopatías/metabolismo , Animales , Ejercicio Físico/fisiología , Humanos , Redes y Vías Metabólicas/fisiología , Proteostasis/fisiología
11.
Sci Rep ; 10(1): 13688, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792571

RESUMEN

Patients with frontotemporal dementia (FTD) resulting from granulin (GRN) haploinsufficiency have reduced levels of progranulin and exhibit dysregulation in inflammatory and lysosomal networks. Microglia produce high levels of progranulin, and reduction of progranulin in microglia alone is sufficient to recapitulate inflammation, lysosomal dysfunction, and hyperproliferation in a cell-autonomous manner. Therefore, targeting microglial dysfunction caused by progranulin insufficiency represents a potential therapeutic strategy to manage neurodegeneration in FTD. Limitations of current progranulin-enhancing strategies necessitate the discovery of new targets. To identify compounds that can reverse microglial defects in Grn-deficient mouse microglia, we performed a compound screen coupled with high throughput sequencing to assess key transcriptional changes in inflammatory and lysosomal pathways. Positive hits from this initial screen were then further narrowed down based on their ability to rescue cathepsin activity, a critical biochemical readout of lysosomal capacity. The screen identified nor-binaltorphimine dihydrochloride (nor-BNI) and dibutyryl-cAMP, sodium salt (DB-cAMP) as two phenotypic modulators of progranulin deficiency. In addition, nor-BNI and DB-cAMP also rescued cell cycle abnormalities in progranulin-deficient cells. These data highlight the potential of a transcription-based platform for drug screening, and advance two novel lead compounds for FTD.


Asunto(s)
Bucladesina/farmacología , Proteasas de Cisteína/metabolismo , Demencia Frontotemporal/genética , Perfilación de la Expresión Génica/métodos , Microglía/citología , Naltrexona/análogos & derivados , Progranulinas/deficiencia , Animales , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Biológicos , Naltrexona/farmacología , Análisis de Secuencia de ARN , Bibliotecas de Moléculas Pequeñas/farmacología
12.
Sci Rep ; 9(1): 6532, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024077

RESUMEN

Organophosphates account for many of the world's deadliest poisons. They inhibit acetylcholinesterase causing cholinergic crises that lead to seizures and death, while survivors commonly experience long-term neurological problems. Here, we treated brain explants with the organophosphate compound paraoxon and uncovered a unique mechanism of neurotoxicity. Paraoxon-exposed hippocampal slice cultures exhibited progressive declines in synaptophysin, synapsin II, and PSD-95, whereas reduction in GluR1 was slower and NeuN and Nissl staining showed no indications of neuronal damage. The distinctive synaptotoxicity was observed in dendritic zones of CA1 and dentate gyrus. Interestingly, declines in synapsin II dendritic labeling correlated with increased staining for ß1 integrin, a component of adhesion receptors that regulate synapse maintenance and plasticity. The paraoxon-induced ß1 integrin response was targeted to synapses, and the two-fold increase in ß1 integrin was selective as other synaptic adhesion molecules were unchanged. Additionally, ß1 integrin-cofilin signaling was triggered by the exposure and correlations were found between the extent of synaptic decline and the level of ß1 integrin responses. These findings identified organophosphate-mediated early and lasting synaptotoxicity which can explain delayed neurological dysfunction later in life. They also suggest that the interplay between synaptotoxic events and compensatory adhesion responses influences neuronal fate in exposed individuals.


Asunto(s)
Dendritas/metabolismo , Exposición a Riesgos Ambientales , Hipocampo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Organofosfatos/toxicidad , Transducción de Señal , Sinapsis/patología , Animales , Antígenos Nucleares/metabolismo , Inhibidores de la Colinesterasa/farmacología , Dendritas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/efectos de los fármacos , Integrina beta1/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Paraoxon/toxicidad , Ratas , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsinas/metabolismo
13.
JCI Insight ; 4(12)2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31217360

RESUMEN

Engulfment and cell motility protein 1 (ELMO1) is part of a guanine nucleotide exchange factor for Ras-related C3 botulinum toxin substrate (Rac), and ELMO1 polymorphisms were identified to be associated with diabetic nephropathy in genome-wide association studies. We generated a set of Akita Ins2C96Y diabetic mice having 5 graded cardiac mRNA levels of ELMO1 from 30% to 200% of normal and found that severe dilated cardiomyopathy develops in ELMO1-hypermorphic mice independent of renal function at age 16 weeks, whereas ELMO1-hypomorphic mice were completely protected. As ELMO1 expression increased, reactive oxygen species indicators, dissociation of the intercalated disc, mitochondrial fragmentation/dysfunction, cleaved caspase-3 levels, and actin polymerization increased in hearts from Akita mice. Cardiomyocyte-specific overexpression in otherwise ELMO1-hypomorphic Akita mice was sufficient to promote cardiomyopathy. Cardiac Rac1 activity was positively correlated with the ELMO1 levels, and oral administration of a pan-Rac inhibitor, EHT1864, partially mitigated cardiomyopathy of the ELMO1 hypermorphs. Disrupting Nox4, a Rac-independent NADPH oxidase, also partially mitigated it. In contrast, a pan-NADPH oxidase inhibitor, VAS3947, markedly prevented cardiomyopathy. Our data demonstrate that in diabetes mellitus ELMO1 is the "rate-limiting" factor of reactive oxygen species production via both Rac-dependent and Rac-independent NADPH oxidases, which in turn trigger cellular signaling cascades toward cardiomyopathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatías Diabéticas/etiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Conexina 43/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Femenino , Corazón/fisiopatología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 4/metabolismo
14.
J Neurochem ; 105(6): 2300-14, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18315564

RESUMEN

We have previously shown that the glutamate receptor interacting protein 1 (GRIP1) splice forms GRIP1a/b and GRIP1c4-7 are present at the GABAergic post-synaptic complex. Nevertheless, the role that these GRIP1 protein isoforms play at the GABAergic post-synaptic complex is not known. We are now showing that GRIP1c4-7 and GRIP1a/b interact with gephyrin, the main post-synaptic scaffold protein of GABAergic and glycinergic synapses. Gephyrin coprecipitates with GRIP1c4-7 or GRIP1a/b from rat brain extracts and from extracts of human embryonic kidney 293 cells that have been cotransfected with gephyrin and one of the GRIP1 protein isoforms. Moreover, purified gephyrin binds to purified GRIP1c4-7 or GRIP1a/b, indicating that gephyrin directly interacts with the common region of these GRIP1 proteins, which includes PDZ domains 4-7. An engineered deletion construct of GRIP1a/b (GRIP1a4-7), which both contains the aforementioned common region and binds to gephyrin, targets to the post-synaptic GABAergic complex of transfected cultured hippocampal neurons. In these hippocampal cultures, endogenous gephyrin colocalizes with endogenous GRIP1c4-7 and GRIP1a/b in over 90% of the GABAergic synapses. Double-labeling electron microscopy immunogold reveals that in the rat brain GRIP1c4-7 and GRIP1a/b colocalize with gephyrin at the post-synaptic complex of individual synapses. These results indicate that GRIP1c4-7 and GRIP1a/b colocalize and interact with gephyrin at the GABAergic post-synaptic complex and suggest that this interaction plays a role in GABAergic synaptic function.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Línea Celular , Células Cultivadas , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Transfección
15.
J Neurochem ; 105(3): 666-76, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18088374

RESUMEN

Evidence for increased calpain activity has been described in the hippocampus of rodent models of temporal lobe epilepsy. However, it is not known whether calpains are involved in the cell death that accompanies seizures. In this work, we characterized calpain activation by examining the proteolysis of calpain substrates and in parallel we followed cell death in the hippocampus of epileptic rats. Male Wistar rats were injected with kainic acid (10 mg/kg) intraperitoneally and killed 24 h later, after development of grade 5 seizures. We observed a strong Fluoro-Jade labeling in the CA1 and CA3 areas of the hippocampus in the rats that received kainic acid, when compared with saline-treated rats. Immunohistochemistry and western blot analysis for the calpain-derived breakdown products of spectrin showed evidence of increased calpain activity in the same regions of the hippocampus where cell death is observed. No evidence was found for caspase activation, in the same conditions. Treatment with the calpain inhibitor MDL 28170 significantly prevented the neurodegeneration observed in CA1. Taken together, our data suggest that early calpain activation, but not caspase activation, is involved in neurotoxicity in the hippocampus after status epilepticus.


Asunto(s)
Calpaína/metabolismo , Epilepsia/enzimología , Hipocampo/enzimología , Degeneración Nerviosa/enzimología , Estado Epiléptico/enzimología , Animales , Caspasas/metabolismo , Convulsivantes , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Fluoresceínas , Hipocampo/patología , Hipocampo/fisiopatología , Ácido Kaínico , Masculino , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Compuestos Orgánicos , Ratas , Ratas Wistar , Espectrina/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología , Factores de Tiempo
16.
J Mol Neurosci ; 34(2): 131-9, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18204977

RESUMEN

Inhibitory neurotransmission is important for brain function and requires specific transmitter receptors that are organized in synaptic domains. Gephyrin is a cytoskeletal organization protein that binds tubulin and plays an important role in clustering and organizing select inhibitory neurotransmitter receptors. Here, we tested if gephyrin is altered by protein accumulation stress that is common in age-related neurodegenerative disorders. For this, we used the hippocampal slice model that has been shown to exhibit chloroquine (CQN)-induced protein accumulation, microtubule destabilization, transport failure, and declines in excitatory neurotransmitter receptors and their responses. In addition to the decreases in excitatory receptor subunits and other glutamatergic markers, we found that gephyrin isoforms were reduced across the CQN treatment period. Associated with this decline in gephyrin levels was the production of three gephyrin breakdown products (GBDPs) of 30, 38, and 48 kDa. The induced effects on gephyrin were tested for evidence of recovery through enhancement of lysosomal function that is known to promote protein clearance and microtubule integrity. Using the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK), gephyrin levels were completely restored in correspondence with the recovery of excitatory glutamatergic components. In addition, GBDPs were significantly reduced after the 2-day PADK treatment, to levels that were at or below those measured in control cultures. These findings suggest that receptor-clustering mechanisms for inhibitory synapses are compromised during protein accumulation events. They also indicate that a lysosomal enhancement strategy can protect gephyrin integrity, which may be vital for the balance between inhibitory and excitatory signaling during age-related diseases.


Asunto(s)
Proteínas Portadoras/metabolismo , Diazometano/análogos & derivados , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Cloroquina/metabolismo , Diazometano/química , Diazometano/metabolismo , Cobayas , Hipocampo/citología , Hipocampo/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo
17.
Eur J Pharmacol ; 587(1-3): 8-15, 2008 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-18420188

RESUMEN

The calcitonin gene-related peptide (CGRP) is a neuropeptide involved in vasodilation and other physiological functions throughout the body. The receptor for CGRP has been cloned and well studied, but the mechanism of CGRP receptor desensitization has not been fully elucidated. In the present study, we evaluated the kinetics for agonist-mediated desensitization of the adenylate cyclase response in human neuroblastoma SK-N-MC cells. Distinct CGRP receptor agonists were used, including alpha and beta isoforms of CGRP, the linearized derivative cys(Et)2,7 alphaCGRP, adrenomedullin, and adrenomedullin 2. betaCGRP was 4-600 times more potent at desensitizing the cAMP production as compared to the other receptor-activating ligands, and all of the desensitization effects were blocked by a CGRP receptor antagonist. Although the different agonists vary in their ability to induce functional desensitization, a pretreatment/washout sequence with each peptide was able to reduce the activation potency of the other members of the calcitonin/CGRP peptide family. Next we tested whether the desensitizing effects of the distinct peptides involve protein kinase C (PKC) or protein kinase A (PKA). A PKC inhibitor, Ro 31-8220, concentration-dependently reduced the desensitization induced by the 5 CGRP receptor agonists, while having little effect on their desensitization potencies. PKA inhibitors KT-5720 and H-89, on the other hand, showed little effect on the induced level of desensitization. The findings indicate that functional desensitization is produced by distinct peptides acting through the active site of CGRP receptors, and involves the activation of PKC as a common component necessary to achieve maximal desensitization of receptor signaling.


Asunto(s)
Proteína Quinasa C/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/agonistas , Adenilil Ciclasas/metabolismo , Adrenomedulina/farmacología , Péptido Relacionado con Gen de Calcitonina/análogos & derivados , Péptido Relacionado con Gen de Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Carbazoles/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Indoles/farmacología , Isoquinolinas/farmacología , Cinética , Ligandos , Proteína Quinasa C/antagonistas & inhibidores , Pirroles/farmacología , Sulfonamidas/farmacología
18.
Curr Opin Neurobiol ; 48: 52-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29028540

RESUMEN

Endo-lysosomal pathways are essential in maintaining protein homeostasis in the cell. Numerous genes in the endo-lysosomal pathways have been found to associate with neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and frontotemporal dementia (FTD). Mutations of these genes lead to dysfunction in multiple steps of the endo-lysosomal network: autophagy, endocytic trafficking and lysosomal degradation, resulting in accumulation of pathogenic proteins. Although the exact pathogenic mechanism varies for different disease-associated genes, dysfunction of the endo-lysosomal pathways represents a converging mechanism shared by these diseases. Therefore, strategies that correct or compensate for endo-lysosomal dysfunction may be promising therapeutic approaches to treat neurodegenerative diseases.


Asunto(s)
Lisosomas/genética , Lisosomas/metabolismo , Enfermedades Neurodegenerativas/genética , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Transducción de Señal/fisiología
19.
Mil Med ; 183(suppl_1): 269-275, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635567

RESUMEN

Threshold shock-impulse levels required to induce cellular injury and cumulative effects upon single and/or multiple exposures are not well characterized. Currently, there are few in vitro experimental models with blast pressure waves generated by using real explosives in the laboratory for investigating the effects of primary blast-induced traumatic brain injury. An in vitro indoor experimental platform is developed using real military explosive charges to accurately represent battlefield blast exposure and to probe the effects of primary explosive blast on dissociated neurons and tissue slices. Preliminary results indicate that physical insults altered membrane permeability, impacted cellular viability, created axonal beadings, and led to synaptic protein loss in hippocampal slice cultures. Injuries from blast under the conditions that were examined did not appear to cause immediate or sustained damage to the cells. Three consecutive primary blasts failed to disrupt the overall cellular integrity in the hippocampal slice cultures and produced a unique type of pathology comprised with distinct reduction in synaptic proteins before cellular deterioration set in. These observed changes might add to the challenges in regard to enhancing our understanding of the complex biochemical and molecular mechanisms caused by primary blast-induced injury.


Asunto(s)
Explosiones , Hipocampo/patología , Neuronas/patología , Sonido/efectos adversos , Animales , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Neuronas/citología , Células PC12/patología , Ratas , Ratas Sprague-Dawley/anomalías , Ratas Sprague-Dawley/lesiones , Triazinas/efectos adversos
20.
Cell Death Dis ; 9(3): 297, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29463792

RESUMEN

Despite the characteristic etiologies and phenotypes, different brain disorders rely on common pathogenic events. Glutamate-induced neurotoxicity is a pathogenic event shared by different brain disorders. Another event occurring in different brain pathological conditions is the increase of the extracellular ATP levels, which is now recognized as a danger and harmful signal in the brain, as heralded by the ability of P2 receptors (P2Rs) to affect a wide range of brain disorders. Yet, how ATP and P2R contribute to neurodegeneration remains poorly defined. For that purpose, we now examined the contribution of extracellular ATP and P2Rs to glutamate-induced neurodegeneration. We found both in vitro and in vivo that ATP/ADP through the activation of P2Y1R contributes to glutamate-induced neuronal death in the rat hippocampus. We found in cultured rat hippocampal neurons that the exposure to glutamate (100 µM) for 30 min triggers a sustained increase of extracellular ATP levels, which contributes to NMDA receptor (NMDAR)-mediated hippocampal neuronal death through the activation of P2Y1R. We also determined that P2Y1R is involved in excitotoxicity in vivo as the blockade of P2Y1R significantly attenuated rat hippocampal neuronal death upon the systemic administration of kainic acid or upon the intrahippocampal injection of quinolinic acid. This contribution of P2Y1R fades with increasing intensity of excitotoxic conditions, which indicates that P2Y1R is not contributing directly to neurodegeneration, rather behaving as a catalyst decreasing the threshold from which glutamate becomes neurotoxic. Moreover, we unraveled that such excitotoxicity process began with an early synaptotoxicity that was also prevented/attenuated by the antagonism of P2Y1R, both in vitro and in vivo. This should rely on the observed glutamate-induced calpain-mediated axonal cytoskeleton damage, most likely favored by a P2Y1R-driven increase of NMDAR-mediated Ca2+ entry selectively in axons. This may constitute a degenerative mechanism shared by different brain diseases, particularly relevant at initial pathogenic stages.


Asunto(s)
Ácido Glutámico/toxicidad , Enfermedades Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular , Femenino , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2Y1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA