Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 70(12): 2392-2408, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35946355

RESUMEN

Growing evidence indicates that circulating lactoferrin (Lf) is implicated in peripheral cholesterol metabolism disorders. It has emerged that the distribution of Lf changes in astrocytes of aging brains and those exhibiting neurodegeneration; however, its physiological and/or pathological role remains unknown. Here, we demonstrate that astrocyte-specific knockout of Lf (designated cKO) led to decreased body weight and cognitive abnormalities during early life in mice. Accordingly, there was a reduction in neuronal outgrowth and synaptic structure in cKO mice. Importantly, Lf deficiency in the primary astrocytes led to decreased sterol regulatory element binding protein 2 (Srebp2) activation and cholesterol production, and cholesterol content in cKO mice and/or in astrocytes was restored by exogenous Lf or a Srebp2 agonist. Moreover, neuronal dendritic complexity and total dendritic length were decreased after culture with the culture medium of the primary astrocytes derived from cKO mice and that this decrease was reversed after cholesterol supplementation. Alternatively, these alterations were associated with an activation of AMP-activated protein kinase (AMPK) and inhibition of SREBP2 nuclear translocation. These data suggest that astrocytic Lf might directly or indirectly control in situ cholesterol synthesis, which may be implicated in neurodevelopment and several neurological diseases.


Asunto(s)
Astrocitos , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Astrocitos/metabolismo , Colesterol/metabolismo , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/farmacología , Ratones , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
2.
Bioorg Chem ; 128: 106100, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988518

RESUMEN

Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer's disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the ß-amyloid (Aß) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aß deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aß levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Melatonina , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quelantes/farmacología , Modelos Animales de Enfermedad , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Transgénicos , Trientina/uso terapéutico
3.
Exp Neurol ; 362: 114346, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750170

RESUMEN

Recent evidence suggests that human islet amyloid polypeptide (h-IAPP) accumulates in the brains of Alzheimer's disease (AD) patients and may interact with Aß or microtubule associated protein tau to associate with the neurodegenerative process. Increasing evidence indicates a potential protective effect of h-IAPP against Aß-induced neurotoxicity in AD mouse models. However, a direct therapeutic effect of h-IAPP supplementation on tauopathy has not been established. Here, we found that long-term h-IAPP treatment attenuated tau hyperphosphorylation levels and induced neuroinflammation and oxidative damage, prevented synaptic loss and neuronal degeneration in the hippocampus, and alleviated behavioral deficits in P301S transgenic mice (a mouse model of tauopathy). Restoration of insulin sensitization, glucose/energy metabolism, and activated BDNF signaling also contributed to the underlying mechanisms. These findings suggest that seemly h-IAPP has promise for the treatment of neurodegenerative disorders with tauopathy, such as AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA