Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Phytopathology ; 113(8): 1369-1379, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36858028

RESUMEN

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

2.
Plant Mol Biol ; 90(6): 537-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26792782

RESUMEN

Recent work has shown that the rhizospheric and phyllospheric microbiomes of plants are composed of highly diverse microbial species. Though the information pertaining to the diversity of the aboveground and belowground microbes associated with plants is known, an understanding of the mechanisms by which these diverse microbes function is still in its infancy. Plants are sessile organisms, that depend upon chemical signals to interact with the microbiota. Of late, the studies related to the impact of microbes on plants have gained much traction in the research literature, supporting diverse functional roles of microbes on plant health. However, how these microbes interact as a community to confer beneficial traits to plants is still poorly understood. Recent advances in the use of "biologicals" as bio-fertilizers and biocontrol agents for sustainable agricultural practices is promising, and a fundamental understanding of how microbes in community work on plants could help this approach be more successful. This review attempts to highlight the importance of different signaling events that mediate a beneficial plant microbe interaction. Fundamental research is needed to understand how plants react to different benign microbes and how these microbes are interacting with each other. This review highlights the importance of chemical signaling, and biochemical and genetic events which determine the efficacy of benign microbes to promote the development of beneficial traits in plants.


Asunto(s)
Microbiota , Plantas/metabolismo , Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Plantas/genética , Rizosfera , Transducción de Señal
3.
Planta ; 242(4): 1037-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26059607

RESUMEN

MAIN CONCLUSION: A natural rice rhizospheric isolate abates arsenic uptake in rice by increasing Fe plaque formation on rice roots. Rice (Oryza sativa L.) is the staple food for over half of the world's population, but its quality and yield are impacted by arsenic (As) in some regions of the world. Bacterial inoculants may be able to mitigate the negative impacts of arsenic assimilation in rice, and we identified a nonpathogenic, naturally occurring rice rhizospheric bacterium that decreases As accumulation in rice shoots in laboratory experiments. We isolated several proteobacterial strains from a rice rhizosphere that promote rice growth and enhance the oxidizing environment surrounding rice root. One Pantoea sp. strain (EA106) also demonstrated increased iron (Fe)-siderophore in culture. We evaluated EA106's ability to impact rice growth in the presence of arsenic, by inoculation of plants with EA106 (or control), subsequently grew the plants in As-supplemented medium, and quantified the resulting plant biomass, Fe and As concentrations, localization of Fe and As, and Fe plaque formation in EA106-treated and control plants. These results show that both arsenic and iron concentrations in rice can be altered by inoculation with the soil microbe EA106. The enhanced accumulation of Fe in the roots and in root plaques suggests that EA106 inoculation improves Fe uptake by the root and promotes the formation of a more oxidative environment in the rhizosphere, thereby allowing more expansive plaque formation. Therefore, this microbe may have the potential to increase food quality through a reduction in accumulation of toxic As species within the aerial portions of the plant.


Asunto(s)
Arsénico/metabolismo , Oryza/microbiología , Rizosfera , Oryza/metabolismo
4.
Plant Physiol ; 166(2): 689-700, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25059708

RESUMEN

There is considerable evidence in the literature that beneficial rhizospheric microbes can alter plant morphology, enhance plant growth, and increase mineral content. Of late, there is a surge to understand the impact of the microbiome on plant health. Recent research shows the utilization of novel sequencing techniques to identify the microbiome in model systems such as Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). However, it is not known how the community of microbes identified may play a role to improve plant health and fitness. There are very few detailed studies with isolated beneficial microbes showing the importance of the functional microbiome in plant fitness and disease protection. Some recent work on the cultivated microbiome in rice (Oryza sativa) shows that a wide diversity of bacterial species is associated with the roots of field-grown rice plants. However, the biological significance and potential effects of the microbiome on the host plants are completely unknown. Work performed with isolated strains showed various genetic pathways that are involved in the recognition of host-specific factors that play roles in beneficial host-microbe interactions. The composition of the microbiome in plants is dynamic and controlled by multiple factors. In the case of the rhizosphere, temperature, pH, and the presence of chemical signals from bacteria, plants, and nematodes all shape the environment and influence which organisms will flourish. This provides a basis for plants and their microbiomes to selectively associate with one another. This Update addresses the importance of the functional microbiome to identify phenotypes that may provide a sustainable and effective strategy to increase crop yield and food security.


Asunto(s)
Microbiota , Microbiología del Suelo , Arabidopsis/microbiología , Zea mays/microbiología
5.
J Biol Chem ; 288(10): 7351-62, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23322782

RESUMEN

Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.


Asunto(s)
Brassicaceae/metabolismo , Ácidos Carboxílicos/metabolismo , Mitocondrias/metabolismo , Níquel/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Brassicaceae/clasificación , Brassicaceae/genética , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Homeostasis , Malatos/metabolismo , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Níquel/farmacología , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Especificidad de la Especie , Factores de Tiempo , Vacuolas/metabolismo
6.
Planta ; 239(1): 171-85, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126723

RESUMEN

The rhizospheric microbiome is comprised of many microbes, some of which reduce the virulence of their phytopathogenic neighbors; however, the mechanisms underlying these interactions are largely unknown. Rice soil isolate Pseudomonas chlororaphis EA105 strongly inhibits Magnaporthe oryzae's in vitro growth by restricting fungal diameter as well as inhibiting the formation of the appressorium, required for penetration. We were interested in elucidating M. oryzae's response to EA105 treatment, and utilized a microarray approach to obtain a global perspective of EA105 elicited changes in this pathogen. Based on this analysis, three genes of interest were knocked out in M. oryzae 70-15, and their sensitivity to EA105 treatment as well as their ability to infect rice was determined. Priming rice plants with EA105 prior to M. oryzae infection decreased lesion size, and the mutants were tested to see if this effect was retained. A null 70-15 mutant in a trichothecene biosynthesis gene showed less susceptibility to bacterial treatment, forming more appressoria than the parental type 70-15. A similar pattern was seen in a null mutant for a stress-inducible protein, MGG_03098. In addition, when this mutant was inoculated onto the leaves of EA105-primed rice plants, lesions were reduced to a greater extent than in 70-15, implicating the lack of this gene with an increased ISR response in rice. Understanding the global effect of biocontrol bacteria on phytopathogens is a key for developing successful and lasting solutions to crop loss caused by plant diseases and has the potential to greatly increase food supply.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Magnaporthe/genética , Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/fisiología , Microbiología del Suelo , Agentes de Control Biológico , Técnicas de Inactivación de Genes , Mutación , Virulencia/genética
7.
Plant Physiol ; 162(2): 732-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624855

RESUMEN

In Arabidopsis (Arabidopsis thaliana), malate released into the rhizosphere has various roles, such as detoxifying rhizotoxic aluminum (Al) and recruiting beneficial rhizobacteria that induce plant immunity. ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1) is a critical gene in these responses, but its regulatory mechanisms remain unclear. To explore the mechanism of the multiple responses of AtALMT1, we profiled its expression patterns in wild-type plants, in transgenic plants harboring various deleted promoter constructs, and in mutant plants with defects in signal transduction in response to various inducers. AtALMT1 transcription was clearly induced by indole-3-acetic acid (IAA), abscisic acid (ABA), low pH, and hydrogen peroxide, indicating that it was able to respond to multiple signals, while it was not induced by methyl jasmonate and salicylic acid. The IAA-signaling double mutant nonphototropic hypocotyls4-1; auxin-responsive factor19-1 and the ABA-signaling mutant aba insensitive1-1 did not respond to auxin and ABA, respectively, but both showed an Al response comparable to that of the wild type. A synthetic microbe-associated molecular pattern peptide, flagellin22 (flg22), induced AtALMT1 transcription but did not induce the transcription of IAA- and ABA-responsive biomarker genes, indicating that both Al and flg22 responses of AtALMT1 were independent of IAA and ABA signaling. An in planta ß-glucuronidase reporter assay identified that the ABA response was regulated by a region upstream (-317 bp) from the first ATG codon, but other stress responses may share critical regulatory element(s) located between -292 and -317 bp. These results illustrate the complex regulation of AtALMT1 expression during the adaptation to abiotic and biotic stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transportadores de Anión Orgánico/genética , Reguladores del Crecimiento de las Plantas/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Acetatos/farmacología , Adaptación Fisiológica , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacología , Peróxido de Hidrógeno/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Macrólidos/farmacología , Mutación , Transportadores de Anión Orgánico/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/efectos de los fármacos , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
8.
Environ Microbiome ; 19(1): 33, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745256

RESUMEN

BACKGROUND: Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps-TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. RESULTS: qPCR revealed that the B. subtilis UD1022eps-TasA- strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial ß-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. CONCLUSION: This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.

9.
Sci Rep ; 14(1): 898, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195662

RESUMEN

As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Lactuca , Salmonella typhimurium , Productos Agrícolas
10.
Plant J ; 72(4): 694-706, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22862801

RESUMEN

Plants exist in a complex multitrophic environment, where they interact with and compete for resources with other plants, microbes and animals. Plants have a complex array of defense mechanisms, such as the cell wall being covered with a waxy cuticle serving as a potent physical barrier. Although some pathogenic fungi infect plants by penetrating through the cell wall, many bacterial pathogens invade plants primarily through stomata on the leaf surface. Entry of the foliar pathogen, Pseudomonas syringae pathovar tomato DC3000 (hereafter PstDC3000), into the plant corpus occurs through stomatal openings, and consequently a key plant innate immune response is the transient closure of stomata, which delays disease progression. Here, we present evidence that the root colonization of the rhizobacteria Bacillus subtilis FB17 (hereafter FB17) restricts the stomata-mediated pathogen entry of PstDC3000 in Arabidopsis thaliana. Root binding of FB17 invokes abscisic acid (ABA) and salicylic acid (SA) signaling pathways to close light-adapted stomata. These results emphasize the importance of rhizospheric processes and environmental conditions as an integral part of the plant innate immune system against foliar bacterial infections.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Hojas de la Planta/microbiología , Estomas de Plantas/microbiología , Ácido Abscísico/metabolismo , Aminoácidos/farmacología , Arabidopsis/anatomía & histología , Arabidopsis/inmunología , Arabidopsis/microbiología , Microscopía por Crioelectrón , Indenos/farmacología , Luz , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/ultraestructura , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Estomas de Plantas/inmunología , Estomas de Plantas/ultraestructura , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Transducción de Señal
11.
Planta ; 238(4): 657-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23794026

RESUMEN

Our previous work has demonstrated that Arabidopsis thaliana can actively recruit beneficial rhizobacteria Bacillus subtilis strain FB17 (hereafter FB17) through an unknown shoot-to-root long-distance signaling pathway post a foliar bacterial pathogen attack. However, it is still not well understood which genetic targets FB17 affects in plants. Microarray analysis of A. thaliana roots treated with FB17 post 24 h of treatment showed 168 and 129 genes that were up- and down-regulated, respectively, compared with the untreated control roots. Those up-regulated include auxin-regulated genes as well as genes involved in metabolism, stress response, and plant defense. In addition, other defense-related genes, as well as cell-wall modification genes were also down-regulated with FB17 colonization. Expression patterns of 20 selected genes were analyzed by semi-quantitative RT-PCR, validating the microarray results. A. thaliana insertion mutants were used against FB17 to further study the functional response of the differentially expressed genes. Five mutants for the up-regulated genes were tested for FB17 colonization, three (at3g28360, at3g20190 and at1g21240) mutants showed decreased FB17 colonization on the roots while increased FB17 titers was seen with three mutants of the down-regulated genes (at3g27980, at4g19690 and at5g56320). Further, these mutants for up-regulated genes and down-regulated genes were foliar infected with Pseudomonas syringae pv. tomato (hereafter PstDC3000) and analyzed for Aluminum activated malate transporter (ALMT1) expression which showed that ALMT1 may be the key regulator for root FB17 colonization. Our microarray showed that under natural condition, FB17 triggers plant responses in a manner similar to known plant growth-promoting rhizobacteria and to some extent also suppresses defense-related genes expression in roots, enabling stable colonization. The possible implication of this study opens up a new dialogin terms of how beneficial microbes regulate plant genetic response for mutualistic associations.


Asunto(s)
Arabidopsis/metabolismo , Bacillus subtilis/fisiología , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Perfilación de la Expresión Génica , Genes de Plantas , Malatos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simbiosis , Transcriptoma
12.
New Phytol ; 220(2): 357-359, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30238485
13.
Plant Physiol ; 160(3): 1642-61, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22972705

RESUMEN

This study demonstrated that foliar infection by Pseudomonas syringae pv tomato DC3000 induced malic acid (MA) transporter (ALUMINUM-ACTIVATED MALATE TRANSPORTER1 [ALMT1]) expression leading to increased MA titers in the rhizosphere of Arabidopsis (Arabidopsis thaliana). MA secretion in the rhizosphere increased beneficial rhizobacteria Bacillus subtilis FB17 (hereafter FB17) titers causing an induced systemic resistance response in plants against P. syringae pv tomato DC3000. Having shown that a live pathogen could induce an intraplant signal from shoot-to-root to recruit FB17 belowground, we hypothesized that pathogen-derived microbe-associated molecular patterns (MAMPs) may relay a similar response specific to FB17 recruitment. The involvement of MAMPs in triggering plant innate immune response is well studied in the plant's response against foliar pathogens. In contrast, MAMPs-elicited plant responses on the roots and the belowground microbial community are not well understood. It is known that pathogen-derived MAMPs suppress the root immune responses, which may facilitate pathogenicity. Plants subjected to known MAMPs such as a flagellar peptide, flagellin22 (flg22), and a pathogen-derived phytotoxin, coronatine (COR), induced a shoot-to-root signal regulating ALMT1 for recruitment of FB17. Micrografts using either a COR-insensitive mutant (coi1) or a flagellin-insensitive mutant (fls2) as the scion and ALMT1(pro):ß-glucuronidase as the rootstock revealed that both COR and flg22 are required for a graft transmissible signal to recruit FB17 belowground. The data suggest that MAMPs-induced signaling to regulate ALMT1 is salicylic acid and JASMONIC ACID RESISTANT1 (JAR1)/JASMONATE INSENSITIVE1 (JIN1)/MYC2 independent. Interestingly, a cell culture filtrate of FB17 suppressed flg22-induced MAMPs-activated root defense responses, which are similar to suppression of COR-mediated MAMPs-activated root defense, revealing a diffusible bacterial component that may regulate plant immune responses. Further analysis showed that the biofilm formation in B. subtilis negates suppression of MAMPs-activated defense responses in roots. Moreover, B. subtilis suppression of MAMPs-activated root defense does require JAR1/JIN1/MYC2. The ability of FB17 to block the MAMPs-elicited signaling pathways related to antibiosis reflects a strategy adapted by FB17 for efficient root colonization. These experiments demonstrate a remarkable strategy adapted by beneficial rhizobacteria to suppress a host defense response, which may facilitate rhizobacterial colonization and host-mutualistic association.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Receptores de Reconocimiento de Patrones/metabolismo , Rhizobiaceae/fisiología , Aminoácidos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Indenos/farmacología , Modelos Biológicos , Mutación/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Rhizobiaceae/crecimiento & desarrollo , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
NPJ Microgravity ; 9(1): 71, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679341

RESUMEN

Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.

15.
Plants (Basel) ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903868

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.

16.
Planta ; 236(2): 477-89, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22411507

RESUMEN

Plants have evolved various mechanisms for detoxification that are specific to the plant species as well as the metal ion chemical properties. Malic acid, which is commonly found in plants, participates in a number of physiological processes including metal chelation. Using natural variation among Arabidopsis accessions, we investigated the function of malic acid in Nickel (Ni) tolerance and detoxification. The Ni-induced production of reactive oxygen species was found to be modulated by intracellular malic acid, indicating its crucial role in Ni detoxification. Ni tolerance in Arabidopsis may actively involve malic acid and/or complexes of Ni and malic acid. Investigation of malic acid content in roots among tolerant ecotypes suggested that a complex of Ni and malic acid may be involved in translocation of Ni from roots to leaves. The exudation of malic acid from roots in response to Ni treatment in either susceptible or tolerant plant species was found to be partially dependent on AtALMT1 expression. A lower concentration of Ni (10 µM) treatment induced AtALMT1 expression in the Ni-tolerant Arabidopsis ecotypes. We found that the ecotype Santa Clara (S.C.) not only tolerated Ni but also accumulated more Ni in leaves compared to other ecotypes. Thus, the ecotype S.C. can be used as a model system to delineate the biochemical and genetic basis of Ni tolerance, accumulation, and detoxification in plants. The evolution of Ni hyperaccumulators, which are found in serpentine soils, is an interesting corollary to the fact that S.C. is also native to serpentine soils.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Malatos/metabolismo , Níquel/metabolismo , Transportadores de Anión Orgánico/genética , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Tolerancia a Medicamentos , Ecotipo , Variación Genética , Mutación , Transportadores de Anión Orgánico/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantones/genética , Plantones/metabolismo , Plantones/fisiología
17.
Plant Methods ; 18(1): 112, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114554

RESUMEN

BACKGROUND: Defining interactions of bacteria in the rhizosphere (encompassing the area near and on the plant root) is important to understand how they affect plant health. Some rhizosphere bacteria, including plant growth promoting rhizobacteria (PGPR) engage in the intraspecies communication known as quorum sensing (QS). Many species of Gram-negative bacteria use extracellular autoinducer signal molecules called N-acyl homoserine lactones (AHLs) for QS. Other rhizobacteria species, including PGPRs, can interfere with or disrupt QS through quorum quenching (QQ). Current AHL biosensor assays used for screening and identifying QS and QQ bacteria interactions fail to account for the role of the plant root. METHODS: Medicago spp. seedlings germinated on Lullien agar were transferred to soft-agar plates containing the broad-range AHL biosensor Agrobacterium tumefaciens KYC55 and X-gal substrate. Cultures of QS and QQ bacteria as well as pure AHLs and a QQ enzyme were applied to the plant roots and incubated for 3 days. RESULTS: We show that this expanded use of an AHL biosensor successfully allowed for visualization of QS/QQ interactions localized at the plant root. KYC55 detected pure AHLs as well as AHLs from live bacteria cultures grown directly on the media. We also showed clear detection of QQ interactions occurring in the presence of the plant root. CONCLUSIONS: Our novel tri-trophic system using an AHL biosensor is useful to study QS interspecies interactions in the rhizosphere.

18.
Nature ; 434(7030): 217-21, 2005 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-15759001

RESUMEN

Most plant species are resistant to most potential pathogens. It is not known why most plant-microbe interactions do not lead to disease, although recent work indicates that this basic disease resistance is multi-factorial. Here we show that the exudation of root-derived antimicrobial metabolites by Arabidopsis thaliana confers tissue-specific resistance to a wide range of bacterial pathogens. However, a Pseudomonas syringae strain that is both at least partly resistant to these compounds and capable of blocking their synthesis/exudation is able to infect the roots and cause disease. We also show that the ability of this P. syringae strain to block antimicrobial exudation is dependent on the type III secretory system.


Asunto(s)
Antiinfecciosos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Arabidopsis/inmunología , Ácido Butírico/metabolismo , Carbón Orgánico , Cinética , Especificidad de Órganos , Raíces de Plantas/inmunología , Pseudomonas syringae/clasificación , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Virulencia
19.
Annu Rev Plant Biol ; 57: 233-66, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16669762

RESUMEN

The rhizosphere encompasses the millimeters of soil surrounding a plant root where complex biological and ecological processes occur. This review describes recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere. Evidence indicating that root exudates may take part in the signaling events that initiate the execution of these interactions is also presented. Various positive and negative plant-plant and plant-microbe interactions are highlighted and described from the molecular to the ecosystem scale. Furthermore, methodologies to address these interactions under laboratory conditions are presented.


Asunto(s)
Raíces de Plantas/fisiología , Interacciones Huésped-Parásitos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA