Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Blood ; 143(13): 1310-1314, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38252902

RESUMEN

ABSTRACT: Among 281 patients with essential thrombocythemia and calreticulin (CALR) mutation, we found a variant allele frequency of ≥60% to be associated with significantly shortened myelofibrosis-free survival, mostly apparent with CALR type-1 and CALR type-indeterminate mutations.


Asunto(s)
Mielofibrosis Primaria , Trombocitemia Esencial , Humanos , Trombocitemia Esencial/complicaciones , Calreticulina/genética , Mielofibrosis Primaria/complicaciones , Mutación , Janus Quinasa 2/genética
2.
Am J Hematol ; 99(8): 1550-1559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38841874

RESUMEN

The variant allele frequency (VAF) of driver mutations (JAK2, CALR) in myeloproliferative neoplasms is associated with features of advanced disease and complications. Ruxolitinib and interferon were reported to variably reduce the mutant VAF, but the long-term impact of molecular responses (MR) remains debated. We prospectively measured changes in JAK2 and CALR VAF in 77 patients with polycythemia vera and essential thrombocythemia, treated with ruxolitinib for a median of 8 years, and assessed correlation with complete clinical and hematological response (CCHR) and outcomes. At last observation time, JAK2 VAF reduced overall from a median of 68% (range, 20%-99%) to 3.5% (0%-98%). A profound and durable MR (DMR; defined as a VAF stably ≤2%), including complete MR in 8%, was achieved in 20% of the patients, a partial MR (PMR; VAF reduction >50% of the baseline level) in 25%, and 56% had no molecular response (NMR). A CCHR was reached by 69% overall, independently of any degree of MR achieved; conversely, a DMR correlated with longer duration of CCHR and, most importantly, with reduced rate of progression to myelofibrosis and with longer myelofibrosis-free, event-free and progression-free survival. Achievement of PMR also had some favorable impact on outcomes, compared to NMR. A baseline JAK2 VAF <50%, and a VAF reduction of ≥35% after 2 years of treatment, predicted for the achievement of DMR and reduced progression to myelofibrosis. Overall, these findings support the clinical value of achieving profound, durable MR and its consideration as surrogate endpoint in future clinical trials.


Asunto(s)
Janus Quinasa 2 , Mutación , Policitemia Vera , Pirazoles , Trombocitemia Esencial , Humanos , Janus Quinasa 2/genética , Policitemia Vera/genética , Policitemia Vera/tratamiento farmacológico , Trombocitemia Esencial/genética , Trombocitemia Esencial/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Pirazoles/uso terapéutico , Anciano de 80 o más Años , Pirimidinas/uso terapéutico , Nitrilos/uso terapéutico , Frecuencia de los Genes , Alelos , Calreticulina/genética , Estudios Prospectivos , Resultado del Tratamiento
3.
J Cell Mol Med ; 19(1): 143-54, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376115

RESUMEN

Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4-benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)-8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)-8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)-8 prompted: acetylation of histones H3/H4 and α-tubulin; G0 /G1 and G2 /M cell cycle arrest by rising p21 and hypophos-phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro-angiogenic potential as shown by results of wound-healing assay, down-regulation of MMP-2 and VEGF-A/VEGF-R2, besides TIMP-1/TIMP-2 up-regulation; and also intracellular accumulation of melanin and neutral lipids. The pan-caspase inhibitor Z-VAD-fmk, but not the antioxidant N-acetyl-cysteine, contrasted these events. Mechanistically, (S)-8 allows the disruption of cytoplasmic HDAC6-protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro-survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2-transfected cells with impaired PP1 activity; monitoring drug-induced HDAC6-PP1 complex re-shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)-8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzodiazepinonas/farmacología , Dibenzazepinas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Melanoma/patología , Proteína Fosfatasa 1/metabolismo , Animales , Benzodiazepinonas/química , Caspasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dibenzazepinas/química , Femenino , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/química , Humanos , Masculino , Melanocitos/efectos de los fármacos , Melanocitos/patología , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estereoisomerismo
4.
Exp Hematol ; 121: 30-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36863479

RESUMEN

Emperipolesis between neutrophils and megakaryocytes was first identified by transmission electron microscopy. Although rare under steady-state conditions, its frequency greatly increases in myelofibrosis, the most severe of myeloproliferative neoplasms, in which it is believed to contribute to increasing the transforming growth factor (TGF)-ß microenvironmental bioavailability responsible for fibrosis. To date, the challenge of performing studies by transmission electron microscopy has hampered the study of factors that drive the pathological emperipolesis observed in myelofibrosis. We established a user-friendly confocal microscopy method that detects emperipolesis by staining with CD42b, specifically expressed on megakaryocytes, coupled with antibodies that recognize the neutrophils (Ly6b or neutrophil elastase antibody). With such an approach, we first confirmed that the bone marrow from patients with myelofibrosis and from Gata1low mice, a model of myelofibrosis, contains great numbers of neutrophils and megakaryocytes in emperipolesis. Both in patients and Gata1low mice, the emperipolesed megakaryocytes were surrounded by high numbers of neutrophils, suggesting that neutrophil chemotaxis precedes the actual emperipolesis event. Because neutrophil chemotaxis is driven by CXCL1, the murine equivalent of human interleukin 8 that is expressed at high levels by malignant megakaryocytes, we tested the hypothesis that neutrophil/megakaryocyte emperipolesis could be reduced by reparixin, an inhibitor of CXCR1/CXCR2. Indeed, the treatment greatly reduced both neutrophil chemotaxis and their emperipolesis with the megakaryocytes in treated mice. Because treatment with reparixin was previously reported to reduce both TGF-ß content and marrow fibrosis, these results identify neutrophil/megakaryocyte emperipolesis as the cellular interaction that links interleukin 8 to TGF-ß abnormalities in the pathobiology of marrow fibrosis.


Asunto(s)
Emperipolesis , Factor de Transcripción GATA1 , Megacariocitos , Mielofibrosis Primaria , Animales , Humanos , Ratones , Emperipolesis/efectos de los fármacos , Factor de Transcripción GATA1/antagonistas & inhibidores , Interleucina-8 , Megacariocitos/metabolismo , Neutrófilos/metabolismo , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Leukemia ; 37(5): 1068-1079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928007

RESUMEN

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


Asunto(s)
Osteopontina , Mielofibrosis Primaria , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología , Animales , Ratones , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Osteopontina/antagonistas & inhibidores , Osteopontina/sangre , Osteopontina/metabolismo , Fibrosis/tratamiento farmacológico , Humanos
6.
Methods Cell Biol ; 171: 81-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953207

RESUMEN

Philadelphia-negative myeloproliferative neoplasms (pH-MPNs) origin from the clonal expansion of hematopoietic stem cells with acquired mutations leading to uncontrolled proliferation of differentiated myeloid cells. The main entities of Ph-MPNs are represented by Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Myelofibrosis (MF) that are characterized by microvascular disorders, thrombosis and bleeding, splenomegaly secondary to extramedullary hematopoiesis, various degree of bone marrow fibrosis and a progressive risk of leukemic transformation. Somatic mutations in myeloid genes including JAK2, CALR, and MPL cause the constitutive activation of the Janus Kinase 2 (JAK)/signal transducer and activator of transcription (STAT) pathway that confers proliferative and differentiative advantage to mutated hematopoietic progenitors and ultimately drives the development of a Ph-MPNs phenotype. Beyond the JAK/STAT axis, a wide number of intracellular signaling pathways were found deregulated in Ph-MPNs including the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) constitutive activation. In this chapter, we provide a detailed protocol for the immunoblotting assisted assessment of Ph-MPNs pathways activation. This protocol can be easily adapted to study protein expression and phosphorylation of hematopoietic stem progenitors and differentiated cell lineages.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Mielofibrosis Primaria , Calreticulina/genética , Humanos , Immunoblotting , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/genética , Fosfatidilinositol 3-Quinasas/genética , Policitemia Vera/genética , Mielofibrosis Primaria/genética , Proteínas Proto-Oncogénicas c-akt/genética , Células Madre , Serina-Treonina Quinasas TOR/genética
7.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35052617

RESUMEN

Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.

8.
Blood Adv ; 5(8): 2184-2195, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33890979

RESUMEN

Calreticulin (CALR), an endoplasmic reticulum-associated chaperone, is frequently mutated in myeloproliferative neoplasms (MPNs). Mutated CALR promotes downstream JAK2/STAT5 signaling through interaction with, and activation of, the thrombopoietin receptor (MPL). Here, we provide evidence of a novel mechanism contributing to CALR-mutated MPNs, represented by abnormal activation of the interleukin 6 (IL-6)-signaling pathway. We found that UT7 and UT7/mpl cells, engineered by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to express the CALR type 1-like (DEL) mutation, acquired cytokine independence and were primed to the megakaryocyte (Mk) lineage. Levels of IL-6 messenger RNA (mRNA), extracellular-released IL-6, membrane-associated glycoprotein 130 (gp130), and IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3 (p-JAK1 and p-STAT3), and IL-6 promoter region occupancy by STAT3 all resulted in increased CALR DEL cells in the absence of MPL stimulation. Wild-type, but not mutated, CALR physically interacted with gp130 and IL-6R, downregulating their expression on the cell membrane. Agents targeting gp130 (SC-144), IL-6R (tocilizumab [TCZ]), and cell-released IL-6 reduced proliferation of CALR DEL as well as CALR knockout cells, supporting a mutated CALR loss-of-function model. CD34+ cells from CALR-mutated patients showed increased levels of IL-6 mRNA and p-STAT3, and colony-forming unit-Mk growth was inhibited by either SC144 or TCZ, as well as an IL-6 antibody, supporting cell-autonomous activation of the IL-6 pathway. Targeting IL-6 signaling also reduced colony formation by CD34+ cells of JAK2V617F-mutated patients. The combination of TCZ and ruxolitinib was synergistic at very low nanomolar concentrations. Overall, our results suggest that target inhibition of IL-6 signaling may have therapeutic potential in CALR, and possibly JAK2V617F, mutated MPNs.


Asunto(s)
Calreticulina , Trastornos Mieloproliferativos , Calreticulina/genética , Humanos , Interleucina-6/genética , Mutación , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Transducción de Señal
9.
Biomark Res ; 9(1): 83, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772467

RESUMEN

Eosinophilia represents a group of diseases with heterogeneous pathobiology and clinical phenotypes. Among the alterations found in primary Eosinophilia, gene fusions involving PDGFRα, PDGFRß, FGFR1 or JAK2 represent the biomarkers of WHO-defined "myeloid and lymphoid neoplasms with eosinophilia". The heterogeneous nature of genomic aberrations and the promiscuity of fusion partners, may limit the diagnostic accuracy of current cytogenetics approaches. To address such technical challenges, we exploited a nanopore-based sequencing assay to screen patients with primary Eosinophilia. The comprehensive sequencing approach described here enables the identification of genomic fusion in 60 h, starting from DNA purified from whole blood.

10.
Sci Rep ; 9(1): 10558, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332222

RESUMEN

Somatic mutations of calreticulin (CALR) have been described in approximately 60-80% of JAK2 and MPL unmutated Essential Thrombocythemia and Primary Myelofibrosis patients. CALR is an endoplasmic reticulum (ER) chaperone responsible for proper protein folding and calcium retention. Recent data demonstrated that the TPO receptor (MPL) is essential for the development of CALR mutant-driven Myeloproliferative Neoplasms (MPNs). However, the precise mechanism of action of CALR mutants haven't been fully unraveled. In this study, we showed that CALR mutants impair the ability to respond to the ER stress and reduce the activation of the pro-apoptotic pathway of the unfolded protein response (UPR). Moreover, our data demonstrated that CALR mutations induce increased sensitivity to oxidative stress, leading to increase oxidative DNA damage. We finally demonstrated that the downmodulation of OXR1 in CALR-mutated cells could be one of the molecular mechanisms responsible for the increased sensitivity to oxidative stress mediated by mutant CALR. Altogether, our data identify novel mechanisms collaborating with MPL activation in CALR-mediated cellular transformation. CALR mutants negatively impact on the capability of cells to respond to oxidative stress leading to genomic instability and on the ability to react to ER stress, causing resistance to UPR-induced apoptosis.


Asunto(s)
Calreticulina/genética , Calreticulina/metabolismo , Mutación INDEL , Estrés Oxidativo/genética , Respuesta de Proteína Desplegada/genética , Transformación Celular Neoplásica/genética , Reparación del ADN/genética , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/genética , Técnicas de Silenciamiento del Gen , Humanos , Células K562 , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fenantrenos/farmacología , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/metabolismo , Trombocitemia Esencial/genética , Trombocitemia Esencial/metabolismo , Transcriptoma
12.
Oncotarget ; 8(57): 96710-96724, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228564

RESUMEN

Inhibition of the constitutively activated JAK/STAT pathway in JAK2V617F mutated cells by the JAK1/JAK2 inhibitor ruxolitinib resulted in clinical benefits in patients with myeloproliferative neoplasms. However, evidence of disease-modifying effects remains scanty; furthermore, some patients do not respond adequately to ruxolitinib, or have transient responses, thus novel treatment strategies are needed. Here we demonstrate that ruxolitinib causes incomplete inhibition of STAT5 in JAK2V617F mutated cells due to persistence of phosphorylated serine residues of STAT5b, that conversely are targeted by PI3K and mTORC1 inhibitors. We found that PI3K/mTOR-dependent phosphorylation of STAT5b serine residues involves Protein Phosphatase 2A and its repressor CIP2A. The levels of CIP2A were found increased in cells harboring the JAK2V617F mutation, and we provide evidence of a correlation between clinical responses and the extent of CIP2A downregulation in myelofibrosis patients receiving the mTOR inhibitor RAD001 in a phase II clinical trial. To achieve maximal inhibition of STAT5 phosphorylation, we combined ruxolitinib with BKM120, a PI3K inhibitor, and RAD001, an mTOR inhibitor, obtaining improved efficacy in JAK2V617F mutated cell lines, primary patients' cells, and JAK2V617F knock-in mice. These findings contribute to understanding the effectiveness of PI3K/mTOR inhibitors in MPN and argue for the rationale to develop combination clinical trials.

13.
Oncotarget ; 7(18): 25862-71, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27029072

RESUMEN

This work describes the effectiveness of HDAC-inhibitor (S)-2 towards colorectal cancer (CRC) HCT116 cells in vitro by inducing cell cycle arrest and apoptosis, and in vivo by contrasting tumour growth in mice xenografts. Among the multifaceted drug-induced events described herein, an interesting link has emerged between the oncoprotein histone deacetylase HDAC1 and the oncogenic Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) which is overexpressed in several cancers including CRCs. HDAC1 inhibition by (S)-2 or specific siRNAs downregulates CIP2A transcription in three different CRC cell lines, thus restoring the oncosuppressor phosphatase PP2A activity that is reduced in most cancers. Once re-activated, PP2A dephosphorylates pGSK-3ß(ser9) which phosphorylates ß-catenin that remains within the cytosol where it undergoes degradation. The decreased amount/activity of ß-catenin transcription factor prompts cell growth arrest by diminishing c-Myc and cyclin D1 expression and abrogating the prosurvival Wnt/ß-catenin signaling pathway. These results are the first evidence that the inhibition of HDAC1 by (S)-2 downregulates CIP2A transcription and unleashes PP2A activity, thus inducing growth arrest and apoptosis in CRC cells.


Asunto(s)
Autoantígenos/biosíntesis , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Proteínas de la Membrana/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HCT116 , Xenoinjertos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína Fosfatasa 2/metabolismo , Transcripción Genética
14.
PLoS One ; 8(3): e58267, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469273

RESUMEN

Histone deacetylase inhibitors (HDACi) represent a promising class of epigenetic agents with anticancer properties. Here, we report that (S)-2, a novel hydroxamate-based HDACi, shown previously to be effective against acute myeloid leukemia cells, was also a potent inducer of apoptosis/differentiation in human prostate LNCaP and PC3 cancer cells. In LNCaP cells (S)-2 was capable of triggering H3/H4 histone acetylation, H2AX phosphorylation as a marker of DNA damage and producing G0/G1 cell cycle arrest. Consistently, (S)-2 led to enhanced expression of both the protein and mRNA p21 levels in LNCaP cells but, contrary to SAHA, not in normal non-tumorigenic prostate PNT1A cells. Mechanistic studies demonstrated that (S)-2-induced apoptosis in LNCaP cells developed through the cleavage of pro-caspase 9 and 3 and of poly(ADP-ribose)-polymerase accompanied by the dose-dependent loss of mitochondrial membrane potential. Indeed, the addition of the pan-caspase inhibitor Z-VAD-fmk greatly reduced drug-mediated apoptosis while the antioxidant N-acetyl-cysteine was virtually ineffective. Importantly, preliminary data with nude mice xenografted with LNCaP cells showed that (S)-2 prompted a decrease in the tumor volume and an increase in H2AX phosphorylation within the cancer cells. Moreover, the highly metastatic prostate cancer PC3 cells were also sensitive to (S)-2 that: i) induced growth arrest and moderate apoptosis; ii) steered cells towards differentiation and neutral lipid accumulation; iii) reduced cell invasiveness potential by decreasing the amount of MMP-9 activity and up-regulating TIMP-1 expression; and iv) inhibited cell motility and migration through the Matrigel. Overall, (S)-2 has proven to be a powerful HDACi capable of inducing growth arrest, cell death and/or differentiation of LNCaP and PC3 prostate cancer cells and, due to its low toxicity and efficacy in vivo, might also be of clinical interest to support conventional prostate cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasas/genética , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Histonas/antagonistas & inhibidores , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Carga Tumoral/efectos de los fármacos , Vorinostat , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Exp Hematol ; 37(10): 1176-1185.e21, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19615424

RESUMEN

OBJECTIVE: This study aimed to investigate the mechanisms of action of WEB-2170, an inverse agonist of platelet-activating factor receptor, capable of inducing apoptosis in human acute myelogenous leukemia (AML) cells. MATERIAL AND METHODS: Gene expression profiling followed by cytofluorimetric, morphologic, and biologic analyses were used to monitor WEB-2170 effects in AML cell lines (ie, NB4, KG1, NB4-MR4, THP1, and U937) and blasts from patients with different AML (M0-M5) subtypes. PTEN silencing with small interfering RNA was also performed. RESULTS: We have demonstrated that drug-mediated cytostasis/apoptosis in NB4 cells is characterized by upregulation of cyclin G2, p21/WAF1, NIX, TNF-alpha, and PTEN expression, and downregulation of cyclin D2 and BCL2 expression. We observed an increase in PTEN protein accompanied by a decrease in phospho-extracellular signal-regulated kinase 2 (ERK2) and phospho-AKT, and by forkhead box O3a (FOXO3a) cytoplasmic-nuclear translocation; the mitochondrial cytochrome C release and PARP cleavage marked the late apoptotic steps. We have found that WEB-2170 triggered apoptosis in NB4, KG1, and NB4-MR4 cells where PTEN was expressed, but not in THP1 and U937 cells where PTEN was absent. Finally, we show that PTEN silencing in NB4 cells by PTEN-specific small interfering RNA resulted in a significant reduction of drug-induced apoptosis. CONCLUSION: We demonstrated that WEB-2170 is a powerful antileukemic agent with interesting translational opportunities to treat AML and described mechanisms of drug-induced intrinsic and extrinsic apoptosis both in AML cell lines and blasts from AML patients by addressing PTEN as the master regulator of the whole process.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Leucemia Mieloide/patología , Proteínas de Neoplasias/fisiología , Fosfohidrolasa PTEN/fisiología , Triazoles/farmacología , Enfermedad Aguda , Adulto , Anciano , Apoptosis/fisiología , Línea Celular Tumoral/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/fisiología , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/biosíntesis , Fosfohidrolasa PTEN/genética , Fosforilación/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA