Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 220: 115255, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634889

RESUMEN

Revealing how aquatic organisms respond to dam impacts is essential for river biomonitoring and management. Traditional examinations of dam impacts on macroinvertebrate assemblages were frequently conducted within single rivers (i.e., between upstream vs. downstream locations) and based on taxonomic identities but have rarely been expanded to level of entire basins (i.e., between dammed vs. undammed rivers) and from a functional trait perspective. Here, we evaluated the effects of dams on macroinvertebrate assemblages at both the within-river and basin scales using functional traits in two comparable tropical tributaries of the Lancang-Mekong River. At different scales, maximum body size, functional feeding groups (FFG), voltinism and occurrence in drift respond significantly to dam impact. Armoring categories varied significantly between downstream sites and upstream sites, and oviposition behavior, habits and adult life span significantly differed between rivers. The key traits at the within-river scale resembled to those at the between-river scale, suggesting that within-river trait variation could further shape functional trait structure at the basin scale in dammed rivers. Furthermore, water nutrients and habitat quality induced by dams showed the most important role in shaping trait structure, although trait-environment relationships varied between the two different scales. In addition, the trait-environment relationships were stronger in the dry season than in the wet season, suggesting a more important role of environmental filtering processes in the dry season compared with the wet season. This study highlights the utility of the trait-based approach to diagnose the effects of damming and emphasizes the importance of spatial scale to examine dam impacts in riverine systems.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Animales , Invertebrados/fisiología , Ecosistema , Ríos/química , Monitoreo Biológico
2.
Sci Total Environ ; 954: 176671, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362532

RESUMEN

Drought and local habitat alteration are major environmental stressors shaping the aquatic biota in dryland rivers. However, the combined effects of these factors on aquatic biodiversity remain poorly understood. We collected macroinvertebrate data from Central Asian dryland rivers in Xinjiang, China, from 2012 to 2022, to investigate the individual and interactive effects of drought (as indicated by increasing values of Aridity, AI) and local habitat conditions (fine sediments, velocity and pH) on aquatic macroinvertebrate functional trait composition and diversity. We found that interactions of the selected environmental stressors exhibited more frequent additive than synergistic or antagonistic effects, leading to shifts in macroinvertebrate functional trait composition and diversity accordingly. Interaction of AI and fine sediments showed more pronounced synergistic effects (positive or negative) compared to others and had positive influences on traits like small body size, ovoviviparity, etc. Functional diversity metrics responded differently to stressor interactions, with FRic and FDis being negatively affected, whereas FEve was positively correlated to stressor interaction, suggesting the complementary roles of functional diversity metrics to diagnose impacts of stressor interactions. Overall, our study provides new insights into macroinvertebrate assemblage-stressor relationships in dryland rivers and can help better assess, predict and manage aquatic biodiversity in these rivers under ongoing environmental change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA