Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38516811

RESUMEN

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Asunto(s)
Ecosistema , Sales (Química) , Purificación del Agua , Salinidad , Agua de Mar/química
2.
Environ Sci Technol ; 56(14): 10339-10348, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35786926

RESUMEN

Biofouling in anaerobic membrane bioreactors (AnMBRs) has not been studied widely. Moreover, the effect of membrane surface properties on biofilm formation beyond initial deposition is controversial. We investigated biofouling with polyvinyldifluoride, polyacrylonitrile, and zwitterion-modified polyethersulfone ultrafiltration membranes having different properties during 72 h filtration using natural anaerobes isolated from AnMBR and analyzed biofilm characteristics by physicochemical and molecular techniques. A decrease in membrane performance was positively correlated with biofilm formation on polyvinyldifluoride and polyacrylonitrile membranes, and as expected, physical cleaning effectively mitigated biofilm on hydrophilic and low-roughness membranes. Surprisingly, while the biofilm on the hydrophilic and low-surface roughness zwitterion-modified membrane was significantly impaired, the impact on transmembrane pressure was the highest. This was ascribed to the formation of a soft compressible thin biofilm with high hydraulic resistance, and internal clogging and pore blocking due to high pore-size distribution. Anaerobe community analysis demonstrated some selection between the bulk and biofilm anaerobes and differences in the relative abundance of the dominant anaerobes among the membranes. However, correlation analyses revealed that all membrane properties studied affected microbial communities' composition, highlighting the system's complexity. Overall, our findings indicate that the membrane properties can affect biofilm formation and the anaerobic microbial population but not necessarily alleviate biofouling.


Asunto(s)
Incrustaciones Biológicas , Anaerobiosis , Bacterias Anaerobias , Biopelículas , Reactores Biológicos , Membranas Artificiales , Ultrafiltración/métodos
3.
Environ Sci Technol ; 56(18): 13142-13151, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044758

RESUMEN

Desalination brine is a hypersaline byproduct that contains various operational chemicals such as polyphosphonate-based antiscalants. Brine often sinks and flows over the seabed by density currents; therefore, it may affect sediment-water nutrient fluxes and thus microbial activity. We quantified these parameters in brine plumes around two large-scale desalination facilities located in the P-limited Southeastern Mediterranean Sea. The benthic nutrient fluxes and microbial activity were determined using ex-situ core benthocosms, to which we added brine from the dispersion area in excess salinities of ∼3% and 5% above natural levels. A higher influx of dissolved organic phosphorus (∼6-fold) and an efflux of dissolved organic carbon (∼1.7-fold) were measured in the brine-amended cores relative to the controls. This was accompanied by increased oxygen consumption (15%) and increased microbial activity (∼1.5-6.5-fold). Field observations support the results from experimental manipulations, yielding ∼4.5-fold higher microbial activity rates around the brine plume compared to uninfluenced locations. Our results imply that desalination brine can alter sedimentary processes affecting benthic nutrients inventories. Moreover, we show that brine acts as a vector of anthropogenic P, stimulating microbial activity in the sediment-water interface.


Asunto(s)
Agua de Mar , Agua , Nutrientes , Compuestos Organofosforados , Sales (Química)
4.
Environ Sci Technol ; 54(8): 5279-5287, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32207926

RESUMEN

Initial deposition of bacteria is a critical stage during biofilm formation and biofouling development in membrane systems used in the water industry. However, the effects of hydrodynamic conditions on spatiotemporal deposition patterns of bacteria during the initial stages of biofilm formation remain unclear. Large field epifluorescence microscopy enabled in situ and real-time tracking of Bacillus subtilis in a forward osmosis system with spacers during the first 4 h of biofilm formation. This study quantitatively compares the spatiotemporal deposition patterns between different hydrodynamic conditions: high and low permeate water flux (6 or 30 L m-2 h-1) as well as high and low crossflow velocity (1 or 14 cm s-1). Low crossflow velocity and high permeate water flux maximized bacterial attachment to the membrane surface, which was 60 times greater (6 × 103 cells mm-2) than at high crossflow velocity and low permeate water flux (<100 cells mm-2). Imaging at 30 s intervals revealed three phases (i.e., lag, exponential, and linear) in the development of deposition over time. Quantification of spatial deposition patterns showed that an increase in the ratio of permeate water flux to crossflow velocity led to a homogeneous deposition, while a decrease had the opposite effect. The insights of this research indicate that an appropriate choice of hydrodynamic conditions can minimize bacteria accumulation prior to biofilm formation in new and cleaned FO membrane systems treating water of high fouling propensity.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Hidrodinámica , Membranas Artificiales , Ósmosis
5.
Biofouling ; 35(1): 104-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30786764

RESUMEN

Bacteria of different Gram-types have inherently different outer cell structures, influencing cell surface properties and bacterial attachment. Dynamic biofouling experiments were conducted over four days in a bench-scale forward osmosis (FO) system with Gram-negative Pseudomonas aeruginosa or Gram-positive Anoxybacillus sp. Biofouling resulted in ∼10% decline in FO permeate water flux and was found to be significant for Anoxybacillus sp. but not for P. aeruginosa. Additionally, a stronger permeate water flux decline for P. aeruginosa in experiments with a superhydrophilic feed spacer demonstrated that mitigation methods require testing with different bacterial Gram-types. It was found that although permeate water flux decline can be affected by bacterial Gram-type the stable performance under enhanced biofouling conditions highlights the potential of FO for wastewater reclamation.


Asunto(s)
Anoxybacillus/crecimiento & desarrollo , Incrustaciones Biológicas , Membranas Artificiales , Ósmosis , Pseudomonas aeruginosa/crecimiento & desarrollo , Purificación del Agua/métodos , Biopelículas , Carbono/química , Microscopía Confocal , Propiedades de Superficie , Aguas Residuales/química
6.
Environ Sci Technol ; 52(17): 10019-10029, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30080406

RESUMEN

Membrane distillation (MD) is a temperature driven membrane separation technology that holds great potential for decentralized and sustainable wastewater treatment systems. Yet, similarly to all membrane based systems, microbial fouling (biofouling) might be a critical hurdle for MD wastewater treatment applications. In this study we determined the impact of increasing feedwater temperatures (47 °C, 55 °C, and 65 °C) on biofilm growth and MD performance via dynamic biofouling experiments with Anoxybacillus sp. as a model bacterium. Our results indicated that cell growth was reduced at 47 °C, resulting in moderate distillate water flux decline (30%). Differently, extensive growth of Anoxybacillus sp. at feedwater temperature of 55 °C caused severe distillate water flux decline (78%). Additionally, biofouling induced membrane wetting, which facilitated the passage of bacteria cells and endospores through the membrane structure into the distillate. Although bacterial growth was impaired at feedwater temperatures of 65 °C, excessive production of EPS (compared to bacterial abundance) crippled membrane separation due to severe pore wetting. These results underline the importance of optimized operating conditions and development of antibiofouling and antiwetting membranes for successful implementation of MD in wastewater treatment with high biofouling propensity.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Destilación , Membranas Artificiales , Ósmosis , Temperatura
7.
Environ Sci Technol ; 52(17): 9684-9693, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30074383

RESUMEN

Forward osmosis (FO) has gained increasing attention in desalination, wastewater treatment, and power generation. However, biofouling remains a major obstacle for the sustainable development of the FO process. Both passive and active strategies have been developed to mitigate membrane biofouling. A comprehensive understanding of different strategies and mechanisms has fundamental significance for the antifouling membrane development. In this study, thin-film composite (TFC) FO membranes were modified with polydopamine (PDA) coating as a passive antibacterial moiety and silver nanoparticles (Ag NPs) as an active antibacterial moiety. Their anti-biofouling performances were investigated both in static and dynamic conditions. In static exposure, the PDA-coated membranes exhibited great passive anti-adhesive property, and the Ag-NP-generated membranes presented both of excellent passive anti-adhesive properties and active antibacterial performance. While in dynamic cross-flow running conditions, Ag NPs effectively mitigated the membrane water flux decline due to their inhibition of biofilm growth, the PDA coating failed because of its inability to inactivate the attached bacteria growth. Moreover, Ag NPs were stable and active on membrane surfaces after 24 h of cross-flow operation. These findings provide new insights into the performances and mechanisms of passive and active moieties in the FO process.


Asunto(s)
Incrustaciones Biológicas , Nanopartículas del Metal , Purificación del Agua , Membranas Artificiales , Ósmosis , Plata
8.
Environ Sci Technol ; 49(21): 13050-8, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26426100

RESUMEN

Next-generation pressure-retarded osmosis (PRO) approaches aim to harness the energy potential of streams with high salinity differences, such as wastewater effluent and seawater desalination plant brine. In this study, we evaluated biofouling propensity in PRO. Bench-scale experiments were carried out for 24 h using a model wastewater effluent feed solution and simulated seawater desalination brine pressurized to 24 bar. For biofouling tests, wastewater effluent was inoculated with Pseudomonas aeruginosa and artificial seawater desalination plant brine draw solution was seeded with Pseudoalteromonas atlantica. Our results indicate that biological growth in the feed wastewater stream channel severely fouled both the membrane support layer and feed spacer, resulting in ∼50% water flux decline. We also observed an increase in the pumping pressure required to force water through the spacer-filled feed channel, with pressure drop increasing from 6.4±0.8 bar m(-1) to 15.1±2.6 bar m(-1) due to spacer blockage from the developing biofilm. Neither the water flux decline nor the increased pressure drop in the feed channel could be reversed using a pressure-aided osmotic backwash. In contrast, biofouling in the seawater brine draw channel was negligible. Overall, the reduced performance due to water flux decline and increased pumping energy requirements from spacer blockage highlight the serious challenges of using high fouling potential feed sources in PRO, such as secondary wastewater effluent. We conclude that PRO power generation using wastewater effluent and seawater desalination plant brine may become possible only with rigorous pretreatment or new spacer and membrane designs.


Asunto(s)
Incrustaciones Biológicas , Ósmosis , Presión , Bacterias/ultraestructura , Biopelículas/crecimiento & desarrollo , Imagenología Tridimensional , Membranas Artificiales , Modelos Teóricos , Presión Osmótica , Salinidad , Sales (Química) , Agua de Mar/química , Espectrometría por Rayos X , Aguas Residuales/química , Purificación del Agua
9.
Environ Sci Technol ; 49(22): 13222-9, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26503882

RESUMEN

We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.


Asunto(s)
Incrustaciones Biológicas , Cationes Bivalentes/química , Pseudomonas aeruginosa/fisiología , Purificación del Agua/métodos , Biopelículas , Cloruro de Calcio/química , Cloruro de Calcio/farmacología , Cloro/química , Difusión , Cloruro de Magnesio/farmacología , Membranas Artificiales , Nylons , Ósmosis , Pseudomonas aeruginosa/efectos de los fármacos , Dispersión de Radiación , Soluciones , Agua , Purificación del Agua/instrumentación
10.
Environ Sci Technol ; 49(2): 691-707, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25494664

RESUMEN

Transparent exopolymer particles (TEP) are ubiquitous in marine and freshwater environments. For the past two decades, the distribution and ecological roles of these polysaccharide microgels in aquatic systems were extensively investigated. More recent studies have implicated TEP as an active agent in biofilm formation and membrane fouling. Since biofouling is one of the main hurdles for efficient operation of membrane-based technologies, there is a heightened interest in understanding the role of TEP in engineered water systems. In this review, we describe relevant TEP terminologies while critically discussing TEP biological origin, biochemical and physical characteristics, and occurrence and distributions in aquatic systems. Moreover, we examine the contribution of TEP to biofouling of various membrane technologies used in the desalination and water/wastewater treatment industry. Emphasis is given to the link between TEP physicochemical and biological properties and the underlying biofouling mechanisms. We highlight that thorough understanding of TEP dynamics in feedwater sources, pretreatment challenges, and biofouling mechanisms will lead to better management of fouling/biofouling in membrane technologies.


Asunto(s)
Incrustaciones Biológicas , Biopolímeros/química , Membranas Artificiales , Polisacáridos/química , Aguas Residuales/microbiología , Purificación del Agua , Biopelículas/crecimiento & desarrollo , Geles , Tamaño de la Partícula , Propiedades de Superficie , Purificación del Agua/instrumentación , Purificación del Agua/métodos
11.
Proc Natl Acad Sci U S A ; 109(23): 9119-24, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615362

RESUMEN

Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity. We introduce the term "protobiofilm" to refer to TEPs with extensive microbial outgrowth and colonization. Such particles display most of the characteristics of developing biofilm, with the exception of being attached to a surface. In this study, coastal seawater was passed through custom-designed flow cells that enabled direct observation of TEPs and protobiofilm in the feedwater stream by bright-field and epifluorescence microscopy. Additionally, we could follow biofilm development on immersed surfaces inside the flow cells. Within minutes, we observed TEP and protobiofilm patches adhering to these surfaces. By 30 min, confocal laser-scanning microscopy (CLSM) revealed numerous patches of Con A and SYTO 9 staining structures covering the surfaces. Atomic force microscopy showed details of a thin, highly sticky, organic conditioning layer between these patches. Bright-field and epifluorescence microscopy and CLSM showed that biofilm development (observed until 24 h) was profoundly inhibited in flow cells with seawater prefiltered to remove most large TEPs and protobiofilm. We propose a revised paradigm for aquatic biofilm development that emphasizes the critical role of microgel particles such as TEPs and protobiofilm in facilitating this process. Recognition of the role of planktonic microgels in aquatic biofilm formation can have applied importance for the water industry.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Geles , Plancton/química , Polímeros/metabolismo , Agua de Mar/química , Adhesión Bacteriana , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Fluorescente , Compuestos Orgánicos , Polímeros/análisis
12.
Environ Sci Technol ; 48(22): 13155-64, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25295386

RESUMEN

Membrane distillation (MD) is an emerging desalination technology that uses low-grade heat to drive water vapor across a microporous hydrophobic membrane. Currently, little is known about the biofilms that grow on MD membranes. In this study, we use estuarine water collected from Long Island Sound in a bench-scale direct contact MD system to investigate the initial stages of biofilm formation. For comparison, we studied biofilm formation in a bench-scale reverse osmosis (RO) system using the same feedwater. These two membrane desalination systems expose the natural microbial community to vastly different environmental conditions: high temperatures with no hydraulic pressure in MD and low temperature with hydraulic pressure in RO. Over the course of 4 days, we observed a steady decline in bacteria concentration (nearly 2 orders of magnitude) in the MD feed reservoir. Even with this drop in planktonic bacteria, significant biofilm formation was observed. Biofilm morphologies on MD and RO membranes were markedly different. MD membrane biofilms were heterogeneous and contained several colonies, while RO membrane biofilms, although thicker, were a homogeneous mat. Phylogenetic analysis using next-generation sequencing of 16S rDNA showed significant shifts in the microbial communities. Bacteria representing the orders Burkholderiales, Rhodobacterales, and Flavobacteriales were most abundant in the MD biofilms. On the basis of the results, we propose two different regimes for microbial community shifts and biofilm development in RO and MD systems.


Asunto(s)
Bacterias/metabolismo , Incrustaciones Biológicas , Destilación , Membranas Artificiales , Ósmosis , Bacterias/genética , Biodiversidad , Biopelículas/crecimiento & desarrollo , Permeabilidad , Filogenia , Agua de Mar/microbiología
13.
Sci Rep ; 14(1): 18126, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103408

RESUMEN

Groundwater aquifers are ecological hotspots with diverse microbes essential for biogeochemical cycles. Their ecophysiology has seldom been studied on a basin scale. In particular, our knowledge of chemosynthesis in the deep aquifers where temperatures reach 60 °C, is limited. Here, we investigated the diversity, activity, and metabolic potential of microbial communities from nine wells reaching ancient groundwater beneath Israel's Negev Desert, spanning two significant, deep (up to 1.5 km) aquifers, the Judea Group carbonate and Kurnub Group Nubian sandstone that contain fresh to brackish, hypoxic to anoxic water. We estimated chemosynthetic productivity rates ranging from 0.55 ± 0.06 to 0.82 ± 0.07 µg C L-1 d-1 (mean ± SD), suggesting that aquifer productivity may be underestimated. We showed that 60% of MAGs harbored genes for autotrophic pathways, mainly the Calvin-Benson-Bassham cycle and the Wood-Ljungdahl pathway, indicating a substantial chemosynthetic capacity within these microbial communities. We emphasize the potential metabolic versatility in the deep subsurface, enabling efficient carbon and energy use. This study set a precedent for global aquifer exploration, like the Nubian Sandstone Aquifer System in the Arabian and Western Deserts, and reconsiders their role as carbon sinks.


Asunto(s)
Agua Subterránea , Agua Subterránea/microbiología , Israel , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Adaptación Fisiológica , Microbiología del Agua , Microbiota
14.
Water Res ; 229: 119411, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36463678

RESUMEN

Many coral reefs are found in arid and semi-arid regions that often face severe water scarcity and depend on seawater desalination for freshwater supply. Alongside freshwater production, desalination plants discharge brine waste into the sea. Brine includes various chemicals (e.g., antiscalants) that may harm the coastal environment. Although widely used, little is known about the ecotoxicological effects of antiscalants (AS) on hard corals. This study compared the impacts of polyphosphonate-based and polymer-based ASs on the coral Montipora capricornis. After two weeks of exposure, we determined the effects of AS on coral physiology, symbiotic microalgae, and associated bacteria, using various analytical approaches such as optical coherence tomography, pulse amplitude modulated fluorometry, and oxidative stress biomarkers. Both ASs reduced polyp activity (∼25%) and caused tissue damage (30% and 41% for polymer and polyphosphonate based AS, respectively). In addition, exposure to polyphosphonate-based AS decreased the abundance of endosymbiotic algae (39%) and upregulated the antioxidant capacity of the animal host (45%). The microalgal symbionts were under oxidative stress, with increased levels of antioxidant capacity and oxidative damage (a 2-fold increase compared to the control). Interestingly, exposure to AS enhanced the numbers of associated bacteria (∼40% compared to the control seawater) regardless of the AS type. Our results introduce new insights into the effects of brine on the physiology of hard corals, highlighting that choosing AS type must be examined according to the receiving ecosystem.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Antioxidantes , Bacterias , Arrecifes de Coral , Ecosistema
15.
ACS Appl Mater Interfaces ; 15(14): 18343-18353, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010122

RESUMEN

Virus removal from water using microfiltration (MF) membranes is of great interest but remains challenging owing to the membranes' mean pore sizes typically being significantly larger than most viruses. We present microporous membranes grafted with polyzwitterionic brushes (N-dimethylammonium betaine) that combine bacteriophage removal in the range of ultrafiltration (UF) membranes with the permeance of MF membranes. Brush structures were grafted in two steps: free-radical polymerization followed by atom transfer radical polymerization (ATRP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) verified that grafting occurred at both sides of the membranes and that the grafting increased with increasing the zwitterion monomer concentration. The log reduction values (LRVs) of the pristine membrane increased from less than 0.5 LRV for T4 (∼100 nm) and NT1 (∼50 nm) bacteriophages to up to 4.5 LRV for the T4 and 3.1 LRV for the NT1 for the brush-grafted membranes with a permeance of about 1000 LMH/bar. The high permeance was attributed to a high-water fraction in the ultra-hydrophilic brush structure. The high measured LRVs of the brush-grafted membranes were attributed to enhanced bacteriophages exclusion from the membrane surface and entrapment of the ones that penetrated the pores due to the membranes' smaller mean pore-size and cross-section porosity than those of the pristine membrane, as seen by scanning electron microscopy (SEM) and measured using liquid-liquid porometry. Micro X-ray fluorescence (µ-XRF) spectrometry and nanoscale secondary ion mass spectrometry showed that 100 nm Si-coated gold nanospheres accumulated on the surface of the pristine membrane but not on the brush-coated membrane and that the nanospheres that penetrated the membranes were entrapped in the brush-grafted membrane but passed the pristine one. These results corroborate the LRVs obtained during filtration experiments and support the inference that the increased removal was due to a combined exclusion mechanism and entrapment. Overall, these microporous brush-grafted membranes show potential for use in advanced water treatment.

16.
Front Microbiol ; 13: 779820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237246

RESUMEN

Recent studies have indicated that heterotrophic diazotrophs are highly diverse and fix N2 in aquatic environments with potentially adverse conditions for diazotrophy, such as oxic and rich in total nitrogen. In this study, we compared the activity and diversity of heterotrophic diazotrophs associated with aggregates (>12 µm) to free-living cells in the eutrophic Qishon River during the winter and summer seasons. Overall, measured heterotrophic N2 fixation rates in the Qishon River ranged between 2.6-3.5 nmol N L-1 d-1. Heterotrophic N2 fixation was mainly associated with aggregates in the summer samples (74 ± 24%), whereas during the winter the bulk diazotrophic activity was mostly ascribed to the free-living fraction (90 ± 6%). In addition, immunolabeled micrographs indicated the presence of aggregate-associated heterotrophic diazotrophs in both seasons, while phototrophic diazotrophs were also captured during the winter. The richness of free-living and aggregate-associated heterotrophic diazotrophs were overall similar, yet the evenness of the later was significantly smaller, suggesting that few of the species gained advantage from particle lifestyle. The differences in the activity, micro-localization and diversity of the diazotrophic community were mostly attributed to spatiotemporal changes in the ambient C:N ratios (total organic carbon, TOC: total nitrogen) and the TOC concentrations. Taken together, our results shed new light on the contribution of heterotrophic diazotroph associated with aggregates to total heterotrophic N2 fixation in oxic, highly eutrophic aquatic environments.

17.
Front Microbiol ; 13: 875050, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464923

RESUMEN

Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.

18.
Water Res ; 215: 118231, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247603

RESUMEN

Circumstantial evidence has suggested that jellyfish swarms impair the operation of seawater reverse osmosis desalination facilities. However, only limited information is currently available on the pretreatment efficiency of jellyfish and their effects on reverse osmosis (RO) membrane performance. Here, we have comprehensively tested the pretreatment efficiency of a dual-media gravity filter and cartridge micro-filtration following the addition of jellyfish into the feedwater. Concurrently, the fouling propensity and performance of the RO membranes were examined. We show that jellyfish demise resulted in seawater eutrophication that triggered a significant increase in bacterial biomass (∼50-fold), activity (∼7-fold), and release of transparent exopolymer particles (∼5-fold), peaking three days after the addition of jellyfish into the feedwater. In parallel, a significant reduction in permeate water flux was recorded (∼10%) while trans-membrane pressure sharply increased (15%), reaching the operation pressure limit of our system (75 bar) after five days. At the conclusion of the experiments, the membrane surface was heavily covered by large chunks of organic-rich material and multilayered biofilms. Our results provide a holistic view on the operational challenges of seawater reverse osmosis (SWRO) desalination triggered by jellyfish swarms in coastal areas. Following the above, it can be inferred that freshwater production will likely be halted three days after drawing the jellyfish into the pretreatment system. Outcomes from these results may lead to the development of science-based operational protocols to cope with growing occurrence of jellyfish swarms around the intake of SWRO desalination facilities worldwide.


Asunto(s)
Purificación del Agua , Filtración , Membranas Artificiales , Ósmosis , Agua de Mar , Purificación del Agua/métodos
19.
Environ Microbiol ; 13(4): 854-71, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21244595

RESUMEN

We report N(2) fixation rates measured from two stations monitored monthly off the Mediterranean coast of Israel during 2006 and 2007, and along a transect from Israel to Crete in September 2008. Analyses of time-series data revealed expression of nifH genes from diazotrophs in nifH clusters I and II, including cyanobacterial bloom-formers Trichodesmium and diatom-Richelia intracellularis associations. However, nifH gene abundance and rates of N(2) fixation were very low in all size fractions measured (> 0.7 µm). Volumetric (15) N uptake ranged from below detection (∼ 36% of > 300 samples) to a high of 0.3 nmol N l(-1) d(-1) and did not vary distinctly with depth or season. Areal N(2) fixation averaged ∼ 1 to 4 µmol N m(-2) d(-1) and contributed only ∼ 1% and 2% of new production and ∼ 0.25% and 0.5% of primary production for the mixed (winter) and stratified (spring-fall) periods respectively. N(2) fixation rates along the 2008 east-west transect were also extremely low (0-0.04 nmol N l(-1) d(-1), integrated average 2.6 µmol N m(-2) d(-1) ) with 37% of samples below detection and no discernable difference between stations. We demonstrate that diazotrophy and N(2) fixation contribute only a minor amount of new N to the P impoverished eastern Mediterranean Sea.


Asunto(s)
Cianobacterias/metabolismo , Diatomeas/metabolismo , Fijación del Nitrógeno , Biodiversidad , Cianobacterias/genética , Diatomeas/genética , Mar Mediterráneo , Nitrógeno/análisis , Nitrógeno/metabolismo , Oxidorreductasas/genética , Filogenia , Estaciones del Año , Agua de Mar/química , Agua de Mar/microbiología , Microbiología del Agua
20.
NPJ Biofilms Microbiomes ; 7(1): 26, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731698

RESUMEN

The bacteriophage infection cycle has been extensively studied, yet little is known about the nanostructure and mechanical changes that lead to bacterial lysis. Here, atomic force microscopy was used to study in real time and in situ the impact of the canonical phage T4 on the nanotopography and biomechanics of irreversibly attached, biofilm-forming E. coli cells. The results show that in contrast to the lytic cycle in planktonic cells, which ends explosively, anchored cells that are in the process of forming a biofilm undergo a more gradual lysis, developing distinct nanoscale lesions (~300 nm in diameter) within the cell envelope. Furthermore, it is shown that the envelope rigidity and cell elasticity decrease (>50% and >40%, respectively) following T4 infection, a process likely linked to changes in the nanostructure of infected cells. These insights show that the well-established lytic pathway of planktonic cells may be significantly different from that of biofilm-forming cells. Elucidating the lysis paradigm of these cells may advance biofilm removal and phage therapeutics.


Asunto(s)
Bacteriófago T4/patogenicidad , Biopelículas/crecimiento & desarrollo , Escherichia coli/fisiología , Adhesión Bacteriana , Bacteriólisis , Fenómenos Biomecánicos , Escherichia coli/ultraestructura , Escherichia coli/virología , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA