Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Cell ; 186(11): 2361-2379.e25, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192619

RESUMEN

Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.


Asunto(s)
Antineoplásicos , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Núcleo Celular/metabolismo , Humanos
2.
Cell ; 170(5): 823-825, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28841414

RESUMEN

Acquired molecular changes can promote the spreading of primary tumor cells to distant tissues. In this issue of Cell, Roe et al. show that metastatic progression of pancreatic cancer involves large-scale enhancer reprogramming by Foxa1, which activates transcriptional program specifying early endodermal stem cells.


Asunto(s)
Elementos de Facilitación Genéticos , Factor Nuclear 3-alfa del Hepatocito , Fibroblastos , Humanos , Metástasis de la Neoplasia
3.
Cell ; 164(5): 1015-30, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26898331

RESUMEN

TGF-ß signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-ß mediator Smad4. We show that TGF-ß induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-ß-sensitive PDA cells, EMT becomes lethal by converting TGF-ß-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-ß. TGF-ß-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-ß tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.


Asunto(s)
Carcinoma Ductal/genética , Transición Epitelial-Mesenquimal , Redes Reguladoras de Genes , Neoplasias Pancreáticas/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Apoptosis , Carcinoma Ductal/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Organoides/metabolismo , Organoides/patología , Neoplasias Pancreáticas/patología , Factores de Transcripción SOXC/metabolismo , Proteína Smad4/metabolismo
4.
Cell ; 165(6): 1401-1415, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27180906

RESUMEN

Chromatin remodeling proteins are frequently dysregulated in human cancer, yet little is known about how they control tumorigenesis. Here, we uncover an epigenetic program mediated by the NAD(+)-dependent histone deacetylase Sirtuin 6 (SIRT6) that is critical for suppression of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies. SIRT6 inactivation accelerates PDAC progression and metastasis via upregulation of Lin28b, a negative regulator of the let-7 microRNA. SIRT6 loss results in histone hyperacetylation at the Lin28b promoter, Myc recruitment, and pronounced induction of Lin28b and downstream let-7 target genes, HMGA2, IGF2BP1, and IGF2BP3. This epigenetic program defines a distinct subset with a poor prognosis, representing 30%-40% of human PDAC, characterized by reduced SIRT6 expression and an exquisite dependence on Lin28b for tumor growth. Thus, we identify SIRT6 as an important PDAC tumor suppressor and uncover the Lin28b pathway as a potential therapeutic target in a molecularly defined PDAC subset. PAPERCLIP.


Asunto(s)
Adenocarcinoma/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Proteínas de Unión al ARN/genética , Sirtuinas/genética , Acetilación , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Femenino , Genes ras , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas de Unión al ARN/metabolismo , Proteínas Supresoras de Tumor/metabolismo
5.
Cell ; 161(7): 1553-65, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26073944

RESUMEN

Hematopoietic stem cells (HSCs) reside in hypoxic niches within bone marrow and cord blood. Yet, essentially all HSC studies have been performed with cells isolated and processed in non-physiologic ambient air. By collecting and manipulating bone marrow and cord blood in native conditions of hypoxia, we demonstrate that brief exposure to ambient oxygen decreases recovery of long-term repopulating HSCs and increases progenitor cells, a phenomenon we term extraphysiologic oxygen shock/stress (EPHOSS). Thus, true numbers of HSCs in the bone marrow and cord blood are routinely underestimated. We linked ROS production and induction of the mitochondrial permeability transition pore (MPTP) via cyclophilin D and p53 as mechanisms of EPHOSS. The MPTP inhibitor cyclosporin A protects mouse bone marrow and human cord blood HSCs from EPHOSS during collection in air, resulting in increased recovery of transplantable HSCs. Mitigating EPHOSS during cell collection and processing by pharmacological means may be clinically advantageous for transplantation.


Asunto(s)
Médula Ósea , Sangre Fetal/citología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Femenino , Trasplante de Células Madre Hematopoyéticas/instrumentación , Células Madre Hematopoyéticas/citología , Humanos , Hipoxia , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Nature ; 622(7984): 850-862, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794185

RESUMEN

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Asunto(s)
Inmunoterapia , Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Interferones/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
7.
Cell ; 152(1-2): 340-51, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332765

RESUMEN

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation.


Asunto(s)
Envejecimiento/genética , Biomarcadores , Transformación Celular Neoplásica , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Luciferasas/genética , Neoplasias/genética , Animales , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Técnicas de Sustitución del Gen , Ratones , Neoplasias/fisiopatología , Heridas y Lesiones/genética
8.
Genes Dev ; 34(11-12): 751-766, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32273287

RESUMEN

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


Asunto(s)
Metabolismo de los Lípidos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas ras/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones SCID , Mutación , Oxidación-Reducción
10.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
11.
Nature ; 558(7711): 600-604, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925948

RESUMEN

Malignancy is accompanied by changes in the metabolism of both cells and the organism1,2. Pancreatic ductal adenocarcinoma (PDAC) is associated with wasting of peripheral tissues, a metabolic syndrome that lowers quality of life and has been proposed to decrease survival of patients with cancer3,4. Tissue wasting is a multifactorial disease and targeting specific circulating factors to reverse this syndrome has been mostly ineffective in the clinic5,6. Here we show that loss of both adipose and muscle tissue occurs early in the development of pancreatic cancer. Using mouse models of PDAC, we show that tumour growth in the pancreas but not in other sites leads to adipose tissue wasting, suggesting that tumour growth within the pancreatic environment contributes to this wasting phenotype. We find that decreased exocrine pancreatic function is a driver of adipose tissue loss and that replacement of pancreatic enzymes attenuates PDAC-associated wasting of peripheral tissues. Paradoxically, reversal of adipose tissue loss impairs survival in mice with PDAC. When analysing patients with PDAC, we find that depletion of adipose and skeletal muscle tissues at the time of diagnosis is common, but is not associated with worse survival. Taken together, these results provide an explanation for wasting of adipose tissue in early PDAC and suggest that early loss of peripheral tissue associated with pancreatic cancer may not impair survival.


Asunto(s)
Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Insuficiencia Pancreática Exocrina/etiología , Insuficiencia Pancreática Exocrina/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/patología , Animales , Composición Corporal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Pancreática Exocrina/patología , Femenino , Masculino , Ratones , Neoplasias Pancreáticas/metabolismo
12.
Genes Dev ; 30(17): 1971-90, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664237

RESUMEN

IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem-epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD-YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem-epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem-epithelial-B-cell phenotype that underlies high-risk B-ALL.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/fisiología , Células Epiteliales/citología , Regulación Leucémica de la Expresión Génica , Factor de Transcripción Ikaros/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Células Precursoras de Linfocitos B/citología , Animales , Epigénesis Genética , Células Epiteliales/patología , Factor de Transcripción Ikaros/genética , Ratones , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfocitos B/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Hepatol ; 78(2): 343-355, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36309131

RESUMEN

BACKGROUND & AIMS: Despite recent approvals, the response to treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) remain poor. Claudin-1 (CLDN1) is a membrane protein that is expressed at tight junctions, but it can also be exposed non-junctionally, such as on the basolateral membrane of the human hepatocyte. While CLDN1 within tight junctions is well characterized, the role of non-junctional CLDN1 and its role as a therapeutic target in HCC remains unexplored. METHODS: Using humanized monoclonal antibodies (mAbs) specifically targeting the extracellular loop of human non-junctional CLDN1 and a large series of patient-derived cell-based and animal model systems we aimed to investigate the role of CLDN1 as a therapeutic target for HCC. RESULTS: Targeting non-junctional CLDN1 markedly suppressed tumor growth and invasion in cell line-based models of HCC and patient-derived 3D ex vivo models. Moreover, the robust effect on tumor growth was confirmed in vivo in a large series of cell line-derived xenograft and patient-derived xenograft mouse models. Mechanistic studies, including single-cell RNA sequencing of multicellular patient HCC tumorspheres, suggested that CLDN1 regulates tumor stemness, metabolism, oncogenic signaling and perturbs the tumor immune microenvironment. CONCLUSIONS: Our results provide the rationale for targeting CLDN1 in HCC and pave the way for the clinical development of CLDN1-specific mAbs for the treatment of advanced HCC. IMPACT AND IMPLICATIONS: Hepatocellular carcinoma (HCC) is associated with high mortality and unsatisfactory treatment options. Herein, we identified the cell surface protein Claudin-1 as a treatment target for advanced HCC. Monoclonal antibodies targeting Claudin-1 inhibit tumor growth in patient-derived ex vivo and in vivo models by modulating signaling, cell stemness and the tumor immune microenvironment. Given the differentiated mechanism of action, the identification of Claudin-1 as a novel therapeutic target for HCC provides an opportunity to break the plateau of limited treatment response. The results of this preclinical study pave the way for the clinical development of Claudin-1-specific antibodies for the treatment of advanced HCC. It is therefore of key impact for physicians, scientists and drug developers in the field of liver cancer and gastrointestinal oncology.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Claudina-1/genética , Neoplasias Hepáticas/genética , Carcinógenos , Microambiente Tumoral , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral
14.
Hepatology ; 75(5): 1322-1337, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226770

RESUMEN

Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain-of-function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R-2-hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1-targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Biología , Colangiocarcinoma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Mutación
15.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26314710

RESUMEN

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteína de Retinoblastoma/genética , Animales , Células Cultivadas , Colon/fisiopatología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Pulmón/fisiopatología , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteómica , Proteína de Retinoblastoma/metabolismo , Estrés Fisiológico/genética , Transcriptoma
16.
Gut ; 71(1): 185-193, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33431577

RESUMEN

OBJECTIVE: Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN: We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS: PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC. Conclusion PlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Factor de Crecimiento Placentario/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Neoplasias de los Conductos Biliares/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Hipoxia/metabolismo , Ratones , Factor de Crecimiento Placentario/antagonistas & inhibidores
17.
Nature ; 539(7629): 390-395, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27799657

RESUMEN

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine-glycine-one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Asunto(s)
Transformación Celular Neoplásica , Metilación de ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Silenciador del Gen , Genes Supresores de Tumor , Glicina/metabolismo , Glucólisis , Humanos , Ratones , Conductos Pancreáticos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Retroelementos/genética , S-Adenosilmetionina/metabolismo , Serina/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Transaminasas/metabolismo
19.
Genes Dev ; 28(5): 479-90, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24589777

RESUMEN

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) have been discovered in several cancer types and cause the neurometabolic syndrome D2-hydroxyglutaric aciduria (D2HGA). The mutant enzymes exhibit neomorphic activity resulting in production of D2-hydroxyglutaric acid (D-2HG). To study the pathophysiological consequences of the accumulation of D-2HG, we generated transgenic mice with conditionally activated IDH2(R140Q) and IDH2(R172K) alleles. Global induction of mutant IDH2 expression in adults resulted in dilated cardiomyopathy, white matter abnormalities throughout the central nervous system (CNS), and muscular dystrophy. Embryonic activation of mutant IDH2 resulted in more pronounced phenotypes, including runting, hydrocephalus, and shortened life span, recapitulating the abnormalities observed in D2HGA patients. The diseased hearts exhibited mitochondrial damage and glycogen accumulation with a concordant up-regulation of genes involved in glycogen biosynthesis. Notably, mild cardiac hypertrophy was also observed in nude mice implanted with IDH2(R140Q)-expressing xenografts, suggesting that 2HG may potentially act in a paracrine fashion. Finally, we show that silencing of IDH2(R140Q) in mice with an inducible transgene restores heart function by lowering 2HG levels. Together, these findings indicate that inhibitors of mutant IDH2 may be beneficial in the treatment of D2HGA and suggest that 2HG produced by IDH mutant tumors has the potential to provoke a paraneoplastic condition.


Asunto(s)
Cardiomiopatías/genética , Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Mutación , Enfermedades Neurodegenerativas/genética , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/patología , Línea Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiopatología , Humanos , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/patología
20.
Development ; 145(9)2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712669

RESUMEN

The architecture of individual cells and cell collectives enables functional specification, a prominent example being the formation of epithelial tubes that transport fluid or gas in many organs. The intrahepatic bile ducts (IHBDs) form a tubular network within the liver parenchyma that transports bile to the intestine. Aberrant biliary 'neoductulogenesis' is also a feature of several liver pathologies including tumorigenesis. However, the mechanism of biliary tube morphogenesis in development or disease is not known. Elimination of the neurofibromatosis type 2 protein (NF2; also known as merlin or neurofibromin 2) causes hepatomegaly due to massive biliary neoductulogenesis in the mouse liver. We show that this phenotype reflects unlimited biliary morphogenesis rather than proliferative expansion. Our studies suggest that NF2 normally limits biliary morphogenesis by coordinating lumen expansion and cell architecture. This work provides fundamental insight into how biliary fate and tubulogenesis are coordinated during development and will guide analyses of disease-associated and experimentally induced biliary pathologies.


Asunto(s)
Conductos Biliares Intrahepáticos/embriología , Proliferación Celular/fisiología , Neurofibromina 2/metabolismo , Organogénesis/fisiología , Animales , Conductos Biliares Intrahepáticos/patología , Eliminación de Gen , Hepatomegalia/embriología , Hepatomegalia/genética , Hepatomegalia/patología , Ratones , Ratones Noqueados , Neurofibromina 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA