Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurotrauma Rep ; 4(1): 560-572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636339

RESUMEN

Traumatic brain injury (TBI), which is characterized by damage to the brain resulting from a sudden traumatic event, is a major cause of death and disability worldwide. It has short- and long-term effects, including neuroinflammation, cognitive deficits, and depression. TBI consists of multiple steps that may sometimes have opposing effects or mechanisms, making it challenging to investigate and translate new knowledge into effective therapies. In order to better understand and address the underlying mechanisms of TBI, we have developed an in vitro platform that allows dynamic simulation of TBI conditions by applying external magnetic forces to induce acceleration and deceleration injury, which is often observed in human TBI. Endothelial and neuron-like cells were successfully grown on magnetic gels and applied to the platform. Both cell types showed an instant response to the TBI model, but the endothelial cells were able to recover quickly-in contrast to the neuron-like cells. In conclusion, the presented in vitro model mimics the mechanical processes of acceleration/deceleration injury involved in TBI and will be a valuable resource for further research on brain injury.

2.
Adv Sci (Weinh) ; 10(27): e2207498, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485582

RESUMEN

Despite significant advancements in in vitro cardiac modeling approaches, researchers still lack the capacity to obtain in vitro measurements of a key indicator of cardiac function: contractility, or stroke volume under specific loading conditions-defined as the pressures to which the heart is subjected prior to and during contraction. This work puts forward a platform that creates this capability, by providing a means of dynamically controlling loading conditions in vitro. This dynamic tissue loading platform consists of a thin magnetoresponsive hydrogel cantilever on which 2D engineered myocardial tissue is cultured. Exposing the cantilever to an external magnetic field-generated by positioning magnets at a controlled distance from the cantilever-causes the hydrogel film to stretch, creating tissue load. Next, cell contraction is induced through electrical stimulation, and the force of the contraction is recorded, by measuring the cantilever's deflection. Force-length-based measurements of contractility are then derived, comparable to clinical measurements. In an illustrative application, the platform is used to measure contractility both in untreated myocardial tissue and in tissue exposed to an inotropic agent. Clear differences are observed between conditions, suggesting that the proposed platform has significant potential to provide clinically relevant measurements of contractility.


Asunto(s)
Corazón , Contracción Miocárdica , Contracción Miocárdica/fisiología , Corazón/fisiología , Miocardio , Hidrogeles , Fenómenos Magnéticos
3.
Rev Sci Instrum ; 92(1): 015110, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514262

RESUMEN

We present a new design for a pulsed supersonic-beam source, inspired by the Even-Lavie valve, which is about four times more energy efficient than its predecessor and can run at more than double the repetition rate without experiencing resonances. Its characteristics make it a better candidate as a source for cryogenic-related experiments as well as spectroscopy with rapidly pulsed lasers. The new design is also simpler to build and is more robust, making it accessible to a larger portion of the scientific community.

4.
Science ; 373(6559): 1105-1109, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34516841

RESUMEN

Angular momentum plays a central role in quantum mechanics, recurring in every length scale from the microscopic interactions of light and matter to the macroscopic behavior of superfluids. Vortex beams, carrying intrinsic orbital angular momentum (OAM), are now regularly generated with elementary particles such as photons and electrons. Thus far, the creation of a vortex beam of a nonelementary particle has never been demonstrated experimentally. We present vortex beams of atoms and molecules, formed by diffracting supersonic beams of helium atoms and dimers off transmission gratings. This method is general and could be applied to most atomic and molecular gases. Our results may open new frontiers in atomic physics, using the additional degree of freedom of OAM to probe collisions and alter fundamental interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA