Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683978

RESUMEN

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Exosomas , Músculo Esquelético , Exosomas/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Fibronectinas/metabolismo , Neuronas Motoras/metabolismo , Interleucina-6/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Neuronas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Mioquinas
2.
Am J Pathol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762116

RESUMEN

Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx is used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) is found to be hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, is not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) is found to be overexpressed in mdx muscles compared with the wild type. LeuRS is known to activate mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduces mTORC1 activity, restores autophagy, and ameliorates myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improves dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncover a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.

3.
Proc Natl Acad Sci U S A ; 119(40): e2209607119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161889

RESUMEN

Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria, gram-negative Escherichia coli bacteria, and Candida albicans (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.


Asunto(s)
ADN Bacteriano , ADN de Hongos , Pruebas con Sangre Seca , Reacción en Cadena de la Polimerasa , Sepsis , Antibacterianos/farmacología , Candida albicans/genética , Candida albicans/aislamiento & purificación , ADN Bacteriano/sangre , ADN de Hongos/sangre , Pruebas con Sangre Seca/métodos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Hemo/química , Humanos , Límite de Detección , Meticilina/farmacología , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Sepsis/sangre , Sepsis/diagnóstico , Sepsis/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Células Madre
4.
Small ; 20(11): e2307959, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888793

RESUMEN

The presence of numerous inhibitors in blood makes their use in nucleic acid amplification techniques difficult. Current methods for extracting and purifying pathogenic DNA from blood involve removal of inhibitors, resulting in low and inconsistent DNA recovery rates. To address this issue, a biphasic method is developed that simultaneously achieves inhibitor inactivation and DNA amplification without the need for a purification step. Inhibitors are physically trapped in the solid-phase dried blood matrix by blood drying, while amplification reagents can move into the solid nano-porous dried blood and initiate the amplification. It is demonstrated that the biphasic method has significant improvement in detection limits for bacteria such as Escherichia coli, Methicillin-resistant Staphylococcus aureus, Methicillin-Sensitive Staphylococcus aureus using loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA). Several factors, such as drying time, sample volume, and material properties are characterized to increase sensitivity and expand the application of the biphasic assay to blood diagnostics. With further automation, this biphasic technique has the potential to be used as a diagnostic platform for the detection of pathogens eliminating lengthy culture steps.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Reacción en Cadena de la Polimerasa , Técnicas de Amplificación de Ácido Nucleico/métodos , Staphylococcus aureus/genética , Escherichia coli/genética , Sensibilidad y Especificidad
5.
Analyst ; 149(4): 1190-1201, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38213181

RESUMEN

The advancement of point-of-care diagnostics is crucial to improving patient outcomes, especially in areas with low access to hospitals or specialized laboratories. In particular, rapid, sensitive, and multiplexed detection of disease biomarkers has great potential to achieve accurate diagnosis and inform high quality care for patients. Our Coulter counting and immunocapture based detection system has previously shown its broad applicability in the detection of cells, proteins, and nucleic acids. This paper expands the capability of the platform by demonstrating multiplexed detection of whole-virus particles using electrically distinguishable hydrogel beads by demonstrating the capability of our platform to achieve simultaneous detection at clinically relevant concentrations of hepatitis A virus (>2 × 103 IU mL-1) and human parvovirus B19 virus like particles (>106 IU mL-1) from plasma samples. The expanded versatility of the differential electrical counting platform allows for more robust and diverse testing capabilities.


Asunto(s)
Ácidos Nucleicos , Parvovirus B19 Humano , Humanos , Microfluídica , Proteínas
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941674

RESUMEN

Tissue-on-chip systems represent promising platforms for monitoring and controlling tissue functions in vitro for various purposes in biomedical research. The two-dimensional (2D) layouts of these constructs constrain the types of interactions that can be studied and limit their relevance to three-dimensional (3D) tissues. The development of 3D electronic scaffolds and microphysiological devices with geometries and functions tailored to realistic 3D tissues has the potential to create important possibilities in advanced sensing and control. This study presents classes of compliant 3D frameworks that incorporate microscale strain sensors for high-sensitivity measurements of contractile forces of engineered optogenetic muscle tissue rings, supported by quantitative simulations. Compared with traditional approaches based on optical microscopy, these 3D mechanical frameworks and sensing systems can measure not only motions but also contractile forces with high accuracy and high temporal resolution. Results of active tension force measurements of engineered muscle rings under different stimulation conditions in long-term monitoring settings for over 5 wk and in response to various chemical and drug doses demonstrate the utility of such platforms in sensing and modulation of muscle and other tissues. Possibilities for applications range from drug screening and disease modeling to biohybrid robotic engineering.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Imagenología Tridimensional/métodos , Músculos/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Acetilcolina/farmacología , Actinina/metabolismo , Animales , Cafeína/farmacología , Técnicas de Cultivo Tridimensional de Células/instrumentación , Diferenciación Celular , Línea Celular , Dantroleno/farmacología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Miosinas/metabolismo , Ingeniería de Tejidos/instrumentación , Vasodilatadores/farmacología
7.
Nanotechnology ; 34(49)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37625391

RESUMEN

The future of medical diagnostics calls for portable biosensors at the point of care, aiming to improve healthcare by reducing costs, improving access, and increasing quality-what is called the 'triple aim'. Developing point-of-care sensors that provide high sensitivity, detect multiple analytes, and provide real time measurements can expand access to medical diagnostics for all. Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability, and large-scale multiplexing. They can also be integrated into wearable or implantable devices and provide continuous, real-time monitoring of analytesin vivo, enabling early detection of biomarkers for disease diagnosis and management. This review analyzes advances in the sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection of the state of the art, and discusses the challenges and opportunities of FET biosensors for future healthcare applications.


Asunto(s)
Técnicas Biosensibles , Sistemas de Atención de Punto , Transistores Electrónicos
8.
Proc Natl Acad Sci U S A ; 117(37): 22727-22735, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868442

RESUMEN

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per µL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


Asunto(s)
Infecciones por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Neumonía Viral/diagnóstico , Pruebas en el Punto de Atención/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Humanos , Límite de Detección , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/normas , Mucosa Nasal/virología , Pandemias , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , SARS-CoV-2 , Teléfono Inteligente
9.
Analyst ; 147(17): 3838-3853, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35726910

RESUMEN

Rapid, simple, inexpensive, accurate, and sensitive point-of-care (POC) detection of viral pathogens in bodily fluids is a vital component of controlling the spread of infectious diseases. The predominant laboratory-based methods for sample processing and nucleic acid detection face limitations that prevent them from gaining wide adoption for POC applications in low-resource settings and self-testing scenarios. Here, we report the design and characterization of an integrated system for rapid sample-to-answer detection of a viral pathogen in a droplet of whole blood comprised of a 2-stage microfluidic cartridge for sample processing and nucleic acid amplification, and a clip-on detection instrument that interfaces with the image sensor of a smartphone. The cartridge is designed to release viral RNA from Zika virus in whole blood using chemical lysis, followed by mixing with the assay buffer for performing reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) reactions in six parallel microfluidic compartments. The battery-powered handheld detection instrument uniformly heats the compartments from below, and an array of LEDs illuminates from above, while the generation of fluorescent reporters in the compartments is kinetically monitored by collecting a series of smartphone images. We characterize the assay time and detection limits for detecting Zika RNA and gamma ray-deactivated Zika virus spiked into buffer and whole blood and compare the performance of the same assay when conducted in conventional PCR tubes. Our approach for kinetic monitoring of the fluorescence-generating process in the microfluidic compartments enables spatial analysis of early fluorescent "bloom" events for positive samples, in an approach called "Spatial LAMP" (S-LAMP). We show that S-LAMP image analysis reduces the time required to designate an assay as a positive test, compared to conventional analysis of the average fluorescent intensity of the entire compartment. S-LAMP enables the RT-LAMP process to be as short as 22 minutes, resulting in a total sample-to-answer time in the range of 17-32 minutes to distinguish positive from negative samples, while demonstrating a viral RNA detection as low as 2.70 × 102 copies per µl, and a gamma-irradiated virus of 103 virus particles in a single 12.5 µl droplet blood sample.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad , Teléfono Inteligente , Instrumentos Quirúrgicos , Virus Zika/genética , Infección por el Virus Zika/diagnóstico
10.
Curr Opin Solid State Mater Sci ; 26(1): 100966, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34840515

RESUMEN

The COVID-19 pandemic revealed fundamental limitations in the current model for infectious disease diagnosis and serology, based upon complex assay workflows, laboratory-based instrumentation, and expensive materials for managing samples and reagents. The lengthy time delays required to obtain test results, the high cost of gold-standard PCR tests, and poor sensitivity of rapid point-of-care tests contributed directly to society's inability to efficiently identify COVID-19-positive individuals for quarantine, which in turn continues to impact return to normal activities throughout the economy. Over the past year, enormous resources have been invested to develop more effective rapid tests and laboratory tests with greater throughput, yet the vast majority of engineering and chemistry approaches are merely incremental improvements to existing methods for nucleic acid amplification, lateral flow test strips, and enzymatic amplification assays for protein-based biomarkers. Meanwhile, widespread commercial availability of new test kits continues to be hampered by the cost and time required to develop single-use disposable microfluidic plastic cartridges manufactured by injection molding. Through development of novel technologies for sensitive, selective, rapid, and robust viral detection and more efficient approaches for scalable manufacturing of microfluidic devices, we can be much better prepared for future management of infectious pathogen outbreaks. Here, we describe how photonic metamaterials, graphene nanomaterials, designer DNA nanostructures, and polymers amenable to scalable additive manufacturing are being applied towards overcoming the fundamental limitations of currently dominant COVID-19 diagnostic approaches. In this paper, we review how several distinct classes of nanomaterials and nanochemistry enable simple assay workflows, high sensitivity, inexpensive instrumentation, point-of-care sample-to-answer virus diagnosis, and rapidly scaled manufacturing.

11.
Proc Natl Acad Sci U S A ; 116(40): 19841-19847, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527266

RESUMEN

The integration of muscle cells with soft robotics in recent years has led to the development of biohybrid machines capable of untethered locomotion. A major frontier that currently remains unexplored is neuronal actuation and control of such muscle-powered biohybrid machines. As a step toward this goal, we present here a biohybrid swimmer driven by on-board neuromuscular units. The body of the swimmer consists of a free-standing soft scaffold, skeletal muscle tissue, and optogenetic stem cell-derived neural cluster containing motor neurons. Myoblasts embedded in extracellular matrix self-organize into a muscle tissue guided by the geometry of the scaffold, and the resulting muscle tissue is cocultured in situ with a neural cluster. Motor neurons then extend neurites selectively toward the muscle and innervate it, developing functional neuromuscular units. Based on this initial construct, we computationally designed, optimized, and implemented light-sensitive flagellar swimmers actuated by these neuromuscular units. Cyclic muscle contractions, induced by neural stimulation, drive time-irreversible flagellar dynamics, thereby providing thrust for untethered forward locomotion of the swimmer. Overall, this work demonstrates an example of a biohybrid robot implementing neuromuscular actuation and illustrates a path toward the forward design and control of neuron-enabled biohybrid machines.


Asunto(s)
Flagelos/fisiología , Neuronas Motoras/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Mioblastos/fisiología , Robótica , Animales , Línea Celular , Técnicas de Cocultivo , Colágeno/química , Células Madre Embrionarias/citología , Diseño de Equipo , Hidrodinámica , Ratones , Movimiento , Optogenética
12.
Proc Natl Acad Sci U S A ; 116(51): 25932-25940, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796592

RESUMEN

Formation of tissue models in 3 dimensions is more effective in recapitulating structure and function compared to their 2-dimensional (2D) counterparts. Formation of 3D engineered tissue to control shape and size can have important implications in biomedical research and in engineering applications such as biological soft robotics. While neural spheroids routinely are created during differentiation processes, further geometric control of in vitro neural models has not been demonstrated. Here, we present an approach to form functional in vitro neural tissue mimic (NTM) of different shapes using stem cells, a fibrin matrix, and 3D printed molds. We used murine-derived embryonic stem cells for optimizing cell-seeding protocols, characterization of the resulting internal structure of the construct, and remodeling of the extracellular matrix, as well as validation of electrophysiological activity. Then, we used these findings to biofabricate these constructs using neurons derived from human embryonic stem cells. This method can provide a large degree of design flexibility for development of in vitro functional neural tissue models of varying forms for therapeutic biomedical research, drug discovery, and disease modeling, and engineering applications.


Asunto(s)
Tejido Nervioso/citología , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Humanos , Ratones , Esferoides Celulares/citología
13.
Anal Chem ; 93(29): 10048-10055, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34251790

RESUMEN

Biomedical diagnostics based on microfluidic devices have the potential to significantly benefit human health; however, the manufacturing of microfluidic devices is a key limitation to their widespread adoption. Outbreaks of infectious disease continue to demonstrate the need for simple, sensitive, and translatable tests for point-of-care use. Additive manufacturing (AM) is an attractive alternative to conventional approaches for microfluidic device manufacturing based on injection molding; however, there is a need for development and validation of new AM process capabilities and materials that are compatible with microfluidic diagnostics. In this paper, we demonstrate the development and characterization of AM cartridges using continuous liquid interface production (CLIP) and investigate process characteristics and capabilities of the AM microfluidic device manufacturing. We find that CLIP accurately produces microfluidic channels as small as 400 µm and that it is possible to routinely produce fluid channels as small as 100 µm with high repeatability. We also developed a loop-mediated isothermal amplification (LAMP) assay for detection of E. coli from whole blood directly on the CLIP-based AM microfluidic cartridges, with a 50 cfu/µL limit of detection, validating the use of CLIP processes and materials for pathogen detection. The portable diagnostic platform presented in this paper could be used to investigate and validate other AM processes for microfluidic diagnostics and could be an important component of scaling up the diagnostics for current and future infectious diseases and pandemics.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Escherichia coli/genética , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico
14.
Anal Chem ; 93(22): 7797-7807, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34033472

RESUMEN

The COVID-19 pandemic has underscored the shortcomings in the deployment of state-of-the-art diagnostics platforms. Although several polymerase chain reaction (PCR)-based techniques have been rapidly developed to meet the growing testing needs, such techniques often need samples collected through a swab, the use of RNA extraction kits, and expensive thermocyclers in order to successfully perform the test. Isothermal amplification-based approaches have also been recently demonstrated for rapid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection by minimizing sample preparation while also reducing the instrumentation and reaction complexity. In addition, there are limited reports of saliva as the sample source, and some of these indicate inferior sensitivity when comparing reverse transcription loop-mediated isothermal amplification (RT-LAMP) with PCR-based techniques. In this paper, we demonstrate an improved sensitivity assay from saliva using a two-step RT-LAMP assay, where a short 10 min RT step is performed with only B3 and backward inner primers before the final reaction. We show that while the one-step RT-LAMP demonstrates satisfactory results, the optimized two-step approach allows detection of only few molecules per reaction and performs significantly better than the one-step RT-LAMP and conventional two-step RT-LAMP approaches with all primers included in the RT step. We show control measurements with RT-PCR, and importantly, we demonstrate RNA extraction-free RT-LAMP-based assays for detection of SARS-CoV-2 from viral transport media and saliva clinical samples.


Asunto(s)
COVID-19 , Transcripción Reversa , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Pandemias , ARN Viral/genética , SARS-CoV-2 , Saliva , Sensibilidad y Especificidad
15.
Biotechnol Bioeng ; 118(11): 4516-4529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415570

RESUMEN

Foodborne illnesses are a major threat to public health also leading to significant mortality and financial and reputational damage to industry. It is very important to detect pathogen presence in food products early, rapidly, and accurately to avoid potential outbreaks and economic loss. However, "gold standard" culture methods, including enrichment of pathogens, can take up to several days. Moreover, the food matrix often interferes with nucleic acid amplification methods of detection, requiring DNA extraction from the sample for successful molecular detection of pathogens. Here, we introduce a "biphasic" amplification method that can achieve high sensitivity detection with background noise from ground beef food samples without culture or other extraction methods in 2.5 h. Homogenized ground beef is dried resulting in an increase in porosity of the dried food matrix to allowing amplification enzymes and primers to access the target DNA and initiate the reaction within the dried food matrix. Using Loop Mediated Isothermal Amplification, we demonstrate the detection of 1-3 cfu of Escherichia coli bacteria in 30 mg of dried food matrix. Our approach significantly lowers the time to result to less than a few hours and have a pronounced impact on reduction of instrumentation complexity and costs.


Asunto(s)
ADN Bacteriano/genética , Escherichia coli O157/genética , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Carne Roja/microbiología , Animales , Bovinos , ADN Bacteriano/análisis
16.
Biomed Microdevices ; 22(2): 36, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32419087

RESUMEN

Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response, leads the U.S in both mortality rate and cost of treatment. Sepsis treatment protocols currently rely on broad and non-specific parameters like heart and respiration rate, and temperature; however, studies show that biomarkers Interlukin-6 (IL-6) and Procalcitonin (PCT) correlate to sepsis progression and response to treatment. Prior work also suggests that using multi-parameter predictive analytics with biomarkers and clinical information can inform treatment to improve outcome. A point-of-care (POC) platform that provides information for multiple biomarkers can aid in the diagnosis and prognosis of potentially septic patients. Using impedance cytometry, microbead immunoassays, and biotin-streptavidin binding, we report a microfluidic POC system that correlates microbead capture to IL-6 and PCT concentrations. A multiplexed microbead immunoassay is developed and validated for simultaneous detection of both IL-6 and PCT from human plasma samples. Using the POC platform, we quantified plasma samples containing healthy, medium (~103pg/ml) and high (~105pg/ml) IL-6 and PCT concentrations with various levels of significance (P < 0.05-P < 0.00001) and validated the concept of this device as a POC platform for sepsis biomarkers.


Asunto(s)
Análisis Químico de la Sangre/instrumentación , Interleucina-6/sangre , Dispositivos Laboratorio en un Chip , Pruebas en el Punto de Atención , Polipéptido alfa Relacionado con Calcitonina/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Impedancia Eléctrica , Humanos , Sepsis/sangre , Sepsis/diagnóstico , Factores de Tiempo
17.
Soft Matter ; 16(34): 8057-8068, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32789332

RESUMEN

Materials used in organ mimics for medial simulation and education require tissue-like softness, toughness, and hydration to give clinicians and students accurate tactile feedback. However, there is a lack of materials that satisfy these requirements. Herein, we demonstrate that a stretchable and tough polyacrylamide hydrogel is useful to build organ mimics that match softness, crack growth resistance, and interstitial water of real organs. Varying the acrylamide concentration between 29 or 62% w/w with a molar ratio between cross-linker and acrylamide of 1 : 10 800 resulted in a fracture energy around ∼2000 J m-2. More interestingly, this tough gel permitted variation of the elastic modulus from 8 to 62 kPa, which matches the softness of brain to vascular and muscle tissue. According to the rheological frequency sweep, the tough polyacrylamide hydrogels had a greatly decreased number of flow units, indicating that when deformed, stress was dispersed over a greater area. We propose that such molecular dissipation results from the increased number of entangled polymers between distant covalent cross-links. The gel was able to undergo various manipulations including stretching, puncture, delivery through a syringe tip, and suturing, thus enabling the use of the gel as a blood vessel model for microsurgery simulation.


Asunto(s)
Hidrogeles , Polímeros , Módulo de Elasticidad , Humanos , Agua
18.
Nano Lett ; 19(3): 2092-2098, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30808165

RESUMEN

Monolayer MoS2 is a promising material for nanoelectronics; however, the lack of nanofabrication tools and processes has made it very challenging to realize nanometer-scale electronic devices from monolayer MoS2. Here, we demonstrate the fabrication of monolayer MoS2 nanoribbon field-effect transistors as narrow as 30 nm using scanning probe lithography (SPL). The SPL process uses a heated nanometer-scale tip to deposit narrow nanoribbon polymer structures onto monolayer MoS2. The polymer serves as an etch mask during a XeF2 vapor etch, which defines the channel of a field-effect transistor (FET). We fabricated seven devices with a channel width ranging from 30 to 370 nm, and the fabrication process was carefully studied by electronic measurements made at each process step. The nanoribbon devices have a current on/off ratio > 104 and an extrinsic field-effect mobility up to 8.53 cm2/(V s). By comparing a 30 nm wide device with a 60 nm wide device that was fabricated on the same MoS2 flake, we found the narrower device had a smaller mobility, a lower on/off ratio, and a larger subthreshold swing. To our knowledge, this is the first published work that describes a working transistor device from monolayer MoS2 with a channel width smaller than 100 nm.

19.
Analyst ; 144(13): 3925-3935, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31094395

RESUMEN

Sepsis, a life-threatening syndrome that contributes to millions of deaths annually worldwide, represents a moral and economic burden to the healthcare system. Although no single, or even a combination of biomarkers has been validated for the diagnosis of sepsis, multiple studies have shown the high specificity of CD64 expression on neutrophils (nCD64) to sepsis. The analysis of elevated nCD64 in the first 2-6 hours after infection during the pro-inflammatory stage could significantly contribute to early sepsis diagnosis. Therefore, a rapid and automated device to periodically measure nCD64 expression at the point-of-care (POC) could lead to timely medical intervention and reduced mortality rates. Current accepted technologies for measuring nCD64 expression, such as flow cytometry, require manual sample preparation and long incubation times. For POC applications, however, the technology should be able to measure nCD64 expression with little to no sample preparation. In this paper, we demonstrate a smartphone-imaged microfluidic biochip for detecting nCD64 expression in under 50 min. In our assay, first unprocessed whole blood is injected into a capture chamber to immunologically capture nCD64 along a staggered array of pillars, which were previously functionalized with an antibody against CD64. Then, an image of the capture channel is taken using a smartphone-based microscope. This image is used to measure the cumulative fraction of captured cells (γ) as a function of length in the channel. During the image analysis, a statistical model is fitted to γ in order to extract the probability of capture of neutrophils per collision with a pillar (ε). The fitting shows a strong correlation with nCD64 expression measured using flow cytometry (R2 = 0.82). Finally, the applicability of the device to sepsis was demonstrated by analyzing nCD64 from 8 patients (37 blood samples analyzed) along the time they were admitted to the hospital. Results from this analysis, obtained using the smartphone-imaged microfluidic biochip were compared with flow cytometry. Again, a correlation coefficient R2 = 0.82 (slope = 0.99) was obtained demonstrating a good linear correlation between the two techniques. Deployment of this technology in ICU could significantly enhance patient care worldwide.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Neutrófilos/inmunología , Receptores de IgG/sangre , Sepsis/diagnóstico , Teléfono Inteligente , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Citometría de Flujo , Humanos , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Persona de Mediana Edad , Pruebas en el Punto de Atención
20.
Proc Natl Acad Sci U S A ; 113(13): 3497-502, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976577

RESUMEN

Complex biological systems sense, process, and respond to their surroundings in real time. The ability of such systems to adapt their behavioral response to suit a range of dynamic environmental signals motivates the use of biological materials for other engineering applications. As a step toward forward engineering biological machines (bio-bots) capable of nonnatural functional behaviors, we created a modular light-controlled skeletal muscle-powered bioactuator that can generate up to 300 µN (0.56 kPa) of active tension force in response to a noninvasive optical stimulus. When coupled to a 3D printed flexible bio-bot skeleton, these actuators drive directional locomotion (310 µm/s or 1.3 body lengths/min) and 2D rotational steering (2°/s) in a precisely targeted and controllable manner. The muscle actuators dynamically adapt to their surroundings by adjusting performance in response to "exercise" training stimuli. This demonstration sets the stage for developing multicellular bio-integrated machines and systems for a range of applications.


Asunto(s)
Músculo Esquelético/fisiología , Optogenética/métodos , Animales , Línea Celular , Diseño de Equipo , Análisis de Elementos Finitos , Locomoción , Ratones , Contracción Muscular/fisiología , Optogenética/instrumentación , Impresión Tridimensional , Robótica/instrumentación , Robótica/métodos , Imagen de Lapso de Tiempo , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA