Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 42(1): e110518, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36341575

RESUMEN

Unusually low temperatures caused by global climate change adversely affect rice production. Sensing cold to trigger signal network is a key base for improvement of chilling tolerance trait.  Here, we report that Oryza sativa Calreticulin 3 (OsCRT3) localized at the endoplasmic reticulum (ER) exhibits conformational changes under cold stress, thereby enhancing its interaction with CBL-interacting protein kinase 7 (OsCIPK7) to sense cold. Phenotypic analyses of OsCRT3 knock-out mutants and transgenic overexpression lines demonstrate that OsCRT3 is a positive regulator in chilling tolerance. OsCRT3 localizes at the ER and mediates increases in cytosolic calcium levels under cold stress. Notably, cold stress triggers secondary structural changes of OsCRT3 and enhances its binding affinity with OsCIPK7, which finally boosts its kinase activity. Moreover, Calcineurin B-like protein 7 (OsCBL7) and OsCBL8 interact with OsCIPK7 specifically on the plasma membrane. Taken together, our results thus identify a cold-sensing mechanism that simultaneously conveys cold-induced protein conformational change, enhances kinase activity, and Ca2+ signal generation to facilitate chilling tolerance in rice.


Asunto(s)
Calreticulina , Oryza , Calreticulina/metabolismo , Oryza/genética , Oryza/metabolismo , Temperatura , Frío , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 98(5): 813-825, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30730075

RESUMEN

Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial role to determine the half-life of key negative regulators of hormone signaling. For ABA signaling, the degradation of clade-A PP2Cs, such as PP2CA or ABI1, is a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. ABA promotes the degradation of PP2CA through the RGLG1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG1 with PP2CA given that they are predominantly found in the plasma membrane and the nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG1 and promotes nuclear interaction with PP2CA. We found RGLG1 is myristoylated in vivo, which facilitates its attachment to the plasma membrane. ABA inhibits the myristoylation of RGLG1 through the downregulation of N-myristoyltransferase 1 (NMT1) and promotes nuclear translocation of RGLG1 in a cycloheximide-insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP2CA protein levels and the formation of RGLG1-receptor-phosphatase complexes. We show that RGLG1Gly2Ala mutated at the N-terminal myristoylation site shows constitutive nuclear localization and causes an enhanced response to ABA and salt or osmotic stress. RGLG1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG1-PP2CA-PYL8. In summary, we provide evidence that an E3 ligase can dynamically relocalize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG1-PP2CA interaction and hence PP2CA degradation.


Asunto(s)
Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteína Fosfatasa 2C/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Aciltransferasas/metabolismo , Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ácido Mirístico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
3.
J Exp Bot ; 70(19): 5205-5216, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199467

RESUMEN

Seeds of Arabidopsis contain ~40% oil, which is primarily in the form of triacylglycerol and it is converted to sugar to support post-germination growth. We identified an Arabidopsis T-DNA knockout mutant that is sugar-dependent during early seedling establishment and determined that the ß-oxidation process involved in catabolising the free fatty acids released from the seed triacylglycerol is impaired. The mutant was confirmed to be transcriptional null for Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases in Arabidopsis. Although it is the shortest, AtPAT15 contains the signature 'Asp-His-His-Cys cysteine-rich domain' that is essential for the enzyme activity of this family of proteins. The function of AtPAT15 was validated by the fact that it rescued the growth defect of the yeast protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient expression in Arabidopsis and tobacco localised AtPAT15 in the Golgi apparatus. Taken together, our data demonstrate that AtPAT15 is involved in ß-oxidation of triacylglycerol, revealing the importance of protein S-acylation in the breakdown of seed-storage lipids during early seedling growth of Arabidopsis.


Asunto(s)
Aciltransferasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Semillas/crecimiento & desarrollo , Triglicéridos/metabolismo , Acilación , Aciltransferasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Lípidos , Mutación , Semillas/genética , Semillas/metabolismo
4.
Biochim Biophys Acta ; 1820(8): 1283-93, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22061997

RESUMEN

BACKGROUND: Calcium serves as a versatile messenger in many adaptation and developmental processes in plants. Ca2+ signals are represented by stimulus-specific spatially and temporally defined Ca2+ signatures. These Ca2+ signatures are detected, decoded and transmitted to downstream responses by a complex toolkit of Ca2+ binding proteins that function as Ca2+ sensors. SCOPE OF REVIEW: This review will reflect on advancements in monitoring Ca2+ dynamics in plants. Moreover, it will provide insights in the extensive and complex toolkit of plant Ca2+ sensor proteins that relay the information presented in the Ca2+ signatures into phosphorylation events, changes in protein-protein interaction or regulation of gene expression. MAJOR CONCLUSIONS: Plants' response to signals is encoded by different Ca2+ signatures. The plant decoding Ca2+ toolkit encompasses different families of Ca2+ sensors like Calmodulins (CaM), Calmodulin-like proteins (CMLs), Ca2+-dependent protein kinases (CDPKs), Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs). These Ca2+ sensors are encoded by complex gene families and form intricate signaling networks in plants that enable specific, robust and flexible information processing. GENERAL SIGNIFICANCE: This review provides new insights about the biochemical regulation, physiological functions and of newly identified target proteins of the major plant Ca2+ sensor families. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.


Asunto(s)
Señalización del Calcio , Plantas/metabolismo , Calcio/metabolismo , Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas/enzimología , Plantas/genética
5.
Plant Physiol ; 160(3): 1597-612, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22968831

RESUMEN

Protein lipid modification of cysteine residues, referred to as S-palmitoylation or S-acylation, is an important secondary and reversible modification that regulates membrane association, trafficking, and function of target proteins. This enzymatic reaction is mediated by protein S-acyl transferases (PATs). Here, the phylogeny, genomic organization, protein topology, expression, and localization pattern of the 24 PAT family members from Arabidopsis (Arabidopsis thaliana) is described. Most PATs are expressed at ubiquitous levels and tissues throughout the development, while few genes are expressed especially during flower development preferentially in pollen and stamen. The proteins display large sequence and structural variations but exhibit a common protein topology that is preserved in PATs from various organisms. Arabidopsis PAT proteins display a complex targeting pattern and were detected at the endoplasmic reticulum, Golgi, endosomal compartments, and the vacuolar membrane. However, most proteins were targeted to the plasma membrane. This large concentration of plant PAT activity to the plasma membrane suggests that the plant cellular S-acylation machinery is functionally different compared with that of yeast (Saccharomyces cerevisiae) and mammalians.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Cisteína/metabolismo , Genómica , Familia de Multigenes , Aciltransferasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Secuencia Conservada , Retículo Endoplásmico/enzimología , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Genoma de Planta/genética , Membranas Intracelulares/metabolismo , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Alineación de Secuencia , Fracciones Subcelulares/enzimología , Vacuolas/metabolismo
6.
Plant Cell ; 22(3): 541-63, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20354197

RESUMEN

Ca(2+) signals are core transducers and regulators in many adaptation and developmental processes of plants. Ca(2+) signals are represented by stimulus-specific signatures that result from the concerted action of channels, pumps, and carriers that shape temporally and spatially defined Ca(2+) elevations. Cellular Ca(2+) signals are decoded and transmitted by a toolkit of Ca(2+) binding proteins that relay this information into downstream responses. Major transduction routes of Ca(2+) signaling involve Ca(2+)-regulated kinases mediating phosphorylation events that orchestrate downstream responses or comprise regulation of gene expression via Ca(2+)-regulated transcription factors and Ca(2+)-responsive promoter elements. Here, we review some of the remarkable progress that has been made in recent years, especially in identifying critical components functioning in Ca(2+) signal transduction, both at the single-cell and multicellular level. Despite impressive progress in our understanding of the processing of Ca(2+) signals during the past years, the elucidation of the exact mechanistic principles that underlie the specific recognition and conversion of the cellular Ca(2+) currency into defined changes in protein-protein interaction, protein phosphorylation, and gene expression and thereby establish the specificity in stimulus response coupling remain to be explored.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Plantas/metabolismo , Canales de Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosforilación , Nodulación de la Raíz de la Planta , Estomas de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Dev Cell ; 57(17): 2081-2094.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007523

RESUMEN

Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Estrés Salino , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
8.
Plant J ; 61(2): 211-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19832944

RESUMEN

During adaptation and developmental processes cells respond through nonlinear calcium-decoding signaling cascades, the principal components of which have been identified. However, the molecular mechanisms generating specificity of cellular responses remain poorly understood. Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by specifically interacting with a group of CBL-interacting protein kinases (CIPKs). Here, we report the subcellular localization of all 10 CBL proteins from Arabidopsis and provide a cellular localization matrix of a plant calcium signaling network. Our findings suggest that individual CBL proteins decode calcium signals not only at the plasma membrane and the tonoplast, but also in the cytoplasm and nucleus. We found that distinct targeting signals located in the N-terminal domain of CBL proteins determine the spatially discrete localization of CBL/CIPK complexes by COPII-independent targeting pathways. Our findings establish the CBL/CIPK signaling network as a calcium decoding system that enables the simultaneous specific information processing of calcium signals emanating from different intra- and extracellular stores, and thereby provides a mechanism underlying the specificity of cellular responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Western Blotting , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Filogenia , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacuolas/metabolismo
9.
Biochim Biophys Acta ; 1793(6): 985-92, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19022300

RESUMEN

Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). Several CBL proteins appear to be targeted to the plasma membrane by means of dual lipid modification by myristoylation and S-acylation. In addition, CBL/CIPK complexes have been identified in other cellular localizations, suggesting that this network may confer spatial specificity in Ca2+ signaling. Molecular genetics analyses of loss-of function mutants have implicated several CBL proteins and CIPKs as important components of abiotic stress responses, hormone reactions and ion transport processes. The occurrence of CBL and CIPK proteins appears not to be restricted to the plant kingdom raising the question about the function of these Ca2+ decoding components in non-plant species.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Calcineurina/genética , Proteínas de Unión al Calcio/clasificación , Proteínas de Unión al Calcio/genética , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Alineación de Secuencia
10.
Dev Cell ; 48(1): 87-99.e6, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30528785

RESUMEN

Guard cells integrate various hormone signals and environmental cues to balance plant gas exchange and transpiration. The wounding-associated hormone jasmonic acid (JA) and the drought hormone abscisic acid (ABA) both trigger stomatal closure. In contrast to ABA however, the molecular mechanisms of JA-induced stomatal closure have remained largely elusive. Here, we identify a fast signaling pathway for JA targeting the K+ efflux channel GORK. Wounding triggers both local and systemic stomatal closure by activation of the JA signaling cascade followed by GORK phosphorylation and activation through CBL1-CIPK5 Ca2+ sensor-kinase complexes. GORK activation strictly depends on plasma membrane targeting and Ca2+ binding of CBL1-CIPK5 complexes. Accordingly, in gork, cbl1, and cipk5 mutants, JA-induced stomatal closure is specifically abolished. The ABA-coreceptor ABI2 counteracts CBL1-CIPK5-dependent GORK activation. Hence, JA-induced Ca2+ signaling in response to biotic stress converges with the ABA-mediated drought stress pathway to facilitate GORK-mediated stomatal closure upon wounding.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Potasio/metabolismo , Fosforilación , Estomas de Plantas/citología , Transducción de Señal/fisiología
11.
FEBS Lett ; 591(22): 3745-3756, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29023681

RESUMEN

Protein S-acylation is important for many biological processes. It confers proteins with the ability to attach to the plasma membrane and the membranes confining the ER and Golgi compartments. Yet, the contribution of S-acylation to regulating and targeting lysosomal/vacuolar proteins remains largely enigmatic. Here, we report that vacuolar targeting of the calcium sensor calcineurin B-like protein 6 (CBL6) from Arabidopsis thaliana is brought about by S-acylation of N-terminal cysteine residues. Our results suggest distinctions in mechanisms and efficiency of targeting between CBL6 and the previously characterized vacuolar-targeted CBL2 protein. Moreover, we define which CBL-interacting protein kinases (CIPKs) could interact with CBL6 and observe a remarkable temperature dependence of CBL6/CIPK complex formation. Collectively, these findings indicate a common S-acyla tion-dependent vacuolar membrane targeting pathway for proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Vacuolas/metabolismo , Acilación , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Temperatura
12.
Sci Rep ; 6: 31645, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27538881

RESUMEN

Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity.


Asunto(s)
Evolución Molecular , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Trichomonas vaginalis/genética
13.
Mol Plant ; 6(6): 1814-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23713076

RESUMEN

Transient and stable expression of transgenes is central to many investigations in plant biology research. Chemical regulation of expression can circumvent problems of plant lethality caused by constitutive overexpression or allow inducible knock (out/down) approaches. Several chemically inducible or repressible systems have been described and successfully applied. However, cloning and application-specific modification of most available inducible expression systems have been limited and remained complicated due to restricted cloning options. Here we describe a new set of 57 vectors that enable transgene expression in transiently or stably transformed cells. All vectors harbor a synthetically optimized XVE expression cassette, allowing ß-estradiol mediated protein expression. Plasmids are equipped with the reporter genes GUS, GFP, mCherry, or with HA and StrepII epitope tags and harbor an optimized multiple cloning site for flexible and simple cloning strategies. Moreover, the vector design allows simple substitution of the driving promoter to achieve tissue-specificity or to modulate expression ranges of inducible transgene expression. We report details of the kinetics and dose-dependence of expression induction in Arabidopsis leaf mesophyll protoplasts, transiently transformed Nicotiana benthamiana leaves, and stably transformed Arabidopsis plants. Using these vectors, we investigated the influence of CBL (Calcineurin B-like) protein expression on the subcellular localization of CIPKs (Calcineurin B-like interacting protein kinases). These analyses uncovered that induced co-expression of CBL3 is fully sufficient for dynamic translocation of CIPK5 from the cytoplasm to the tonoplast. Thus, the vector system presented here facilitates a broad range of research applications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Citoplasma/metabolismo , Estradiol/química , Orgánulos/metabolismo , Proteínas Quinasas/metabolismo , Transgenes , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proteínas de Unión al Calcio/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Plásmidos , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Transporte de Proteínas , Nicotiana/genética
14.
Cell Res ; 22(7): 1155-68, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22547024

RESUMEN

Calcineurin B-like (CBL) proteins contribute to decoding calcium signals by interacting with CBL-interacting protein kinases (CIPKs). Currently, there is still very little information about the function and specific targeting mechanisms of CBL proteins that are localized at the vacuolar membrane. In this study, we focus on CBL2, an abundant vacuolar membrane-localized calcium sensor of unknown function from Arabidopsis thaliana. We show that vacuolar targeting of CBL2 is specifically brought about by S-acylation of three cysteine residues in its N-terminus and that CBL2 S-acylation and targeting occur by a Brefeldin A-insensitive pathway. Loss of CBL2 function renders plants hypersensitive to the phytohormone abscisic acid (ABA) during seed germination and only fully S-acylated and properly vacuolar-targeted CBL2 proteins can complement this mutant phenotype. These findings define an S-acylation-dependent vacuolar membrane targeting pathway for proteins and uncover a crucial role of vacuolar calcium sensors in ABA responses.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Membranas Intracelulares/metabolismo , Vacuolas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Microscopía Fluorescente , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos
15.
Plant Cell ; 20(5): 1346-62, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18502848

RESUMEN

Arabidopsis thaliana calcineurin B-like proteins (CBLs) interact specifically with a group of CBL-interacting protein kinases (CIPKs). CBL/CIPK complexes phosphorylate target proteins at the plasma membrane. Here, we report that dual lipid modification is required for CBL1 function and for localization of this calcium sensor at the plasma membrane. First, myristoylation targets CBL1 to the endoplasmic reticulum. Second, S-acylation is crucial for endoplasmic reticulum-to-plasma membrane trafficking via a novel cellular targeting pathway that is insensitive to brefeldin A. We found that a 12-amino acid peptide of CBL1 is sufficient to mediate dual lipid modification and to confer plasma membrane targeting. Moreover, the lipid modification status of the calcium sensor moiety determines the cellular localization of preassembled CBL/CIPK complexes. Our findings demonstrate the importance of S-acylation for regulating the spatial accuracy of Ca2+-decoding proteins and suggest a novel mechanism that enables the functional specificity of calcium sensor/kinase complexes.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Transducción de Señal/fisiología , Acilación , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brefeldino A/farmacología , Proteínas de Unión al Calcio/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/química , Ácidos Grasos Monoinsaturados/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos
16.
Plant J ; 50(2): 347-63, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17376166

RESUMEN

The tolerance responses of plants to many abiotic stresses are conjectured to be controlled by complex gene networks. In the frame of the AtGenExpress project a comprehensive Arabidopsis thaliana genome transcript expression study was performed using the Affymetrix ATH1 microarray in order to understand these regulatory networks in detail. In contrast to earlier studies, we subjected, side-by-side and in a high-resolution kinetic series, Arabidopsis plants, of identical genotype grown under identical conditions, to different environmental stresses comprising heat, cold, drought, salt, high osmolarity, UV-B light and wounding. Furthermore, the harvesting of tissue and RNA isolation were performed in parallel at the same location using identical experimental protocols. Here we describe the technical performance of the experiments. We also present a general overview of environmental abiotic stress-induced gene expression patterns and the results of a model bioinformatics analysis of gene expression in response to UV-B light, drought and cold stress. Our results suggest that the initial transcriptional stress reaction of Arabidopsis might comprise a set of core environmental stress response genes which, by adjustment of the energy balance, could have a crucial function in various stress responses. In addition, there are indications that systemic signals generated by the tissue exposed to stress play a major role in the coordination and execution of stress responses. In summary, the information reported provides a prime reference point and source for the subsequent exploitation of this important resource for research into plant abiotic stress.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Frío , Biología Computacional , Desastres , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genoma de Planta/genética , Calor , Modelos Genéticos , Presión Osmótica , Análisis de Componente Principal , Reproducibilidad de los Resultados , Sales (Química)/farmacología , Rayos Ultravioleta
17.
Plant J ; 52(2): 223-39, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17922773

RESUMEN

Calcium signalling involves sensor proteins that decode temporal and spatial changes in cellular Ca2+ concentration. Calcineurin B-like proteins (CBLs) represent a unique family of plant calcium sensors that relay signals by interacting with a family of protein kinases, designated as CBL-interacting protein kinases (CIPKs). In a reverse genetic screen for altered drought tolerance, we identified a loss-of-function allele of CIPK23 as exhibiting a drought-tolerant phenotype. In the cipk23 mutant, reduced transpirational water loss from leaves coincides with enhanced ABA sensitivity of guard cells during opening as well as closing reactions, without noticeable alterations in ABA content in the plant. We identified the calcium sensors CBL1 and CBL9 as CIPK23-interacting proteins that targeted CIPK23 to the plasma membrane in vivo. Expression analysis of the CIPK23, CBL1 and CBL9 genes suggested that they may function together in diverse tissues, including guard cells and root hairs. In addition, expression of the CIPK23 gene was induced by low-potassium conditions, implicating a function of this gene product in potassium nutrition. Indeed, cipk23 mutants displayed severe growth impairment on media with low concentrations of potassium. This phenotype correlates with a reduced efficiency of K+ uptake into the roots. In support of the conclusion that CBL1 and CBL9 interact with and synergistically serve as upstream regulators of CIPK23, the cbl1 cbl9 double mutant, but not the cbl1 or cbl9 single mutants, exhibit altered phenotypes for stomatal responses and low-potassium sensitivity. Together with the recent identification of the potassium channel AKT1 as a target of CIPK23, these results imply that plasma membrane-localized CBL1- and CBL9-CIPK23 complexes simultaneously regulate K+ transport processes in roots and in stomatal guard cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Transpiración de Plantas/fisiología , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Serina-Treonina Quinasas/genética , Agua/metabolismo
18.
Plant J ; 48(6): 857-72, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17092313

RESUMEN

Intracellular release of calcium ions belongs to the earliest events in cellular stress perception. The molecular mechanisms integrating signals from different environmental cues and translating them into an optimized response are largely unknown. We report here the functional characterization of CIPK1, a protein kinase interacting strongly with the calcium sensors CBL1 and CBL9. Comparison of the expression patterns indicates that the three proteins execute their functions in the same tissues. Physical interaction of CIPK1 with CBL1 and CBL9 targets the kinase to the plasma membrane. We show that, similarly to loss of CBL9 function, mutation of either CBL1 or CIPK1 renders plants hypersensitive to osmotic stress. Remarkably, in contrast to the cbl1 mutant and similarly to the cbl9 mutant, loss of CIPK1 function impairs abscisic acid (ABA) responsiveness. We therefore suggest that, by alternative complex formation with either CBL1 or CBL9, the kinase CIPK1 represents a convergence point for ABA-dependent and ABA-independent stress responses. Based on our genetic, physiological and protein-protein interaction data, we propose a general model for information processing in calcium-regulated signalling networks.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Presión Osmótica , Proteínas Serina-Treonina Quinasas/genética
19.
Planta ; 219(6): 915-24, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15322881

RESUMEN

Plant development and reproduction depend on a precise recognition of environmental conditions and the integration of this information with endogenous metabolic and developmental cues. Calcium ions have been firmly established as ubiquitous second messengers functioning in these processes. Calcium signal deciphering and signal-response coupling often involve calcium-binding proteins as responders or relays in this information flow. Here we review the calcineurin B-like protein (CBL) calcium sensor/CBL-interacting protein kinase (CIPK) network as a newly emerging signaling system mediating a complex array of environmental stimuli. We focus particularly on the mechanisms generating signaling specificity. Moreover, we emphasize the functional implications that are emerging from the analyses of CBL and CIPK loss-of-function mutants.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Calcio/fisiología , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas Quinasas/genética
20.
Plant Physiol ; 134(1): 43-58, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14730064

RESUMEN

Calcium signals mediate a multitude of plant responses to external stimuli and regulate a wide range of physiological processes. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, represent important relays in plant calcium signaling. These proteins form a complex network with their target kinases being the CBL-interacting protein kinases (CIPKs). Here, we present a comparative genomics analysis of the full complement of CBLs and CIPKs in Arabidopsis and rice (Oryza sativa). We confirm the expression and transcript composition of the 10 CBLs and 25 CIPKs encoded in the Arabidopsis genome. Our identification of 10 CBLs and 30 CIPKs from rice indicates a similar complexity of this signaling network in both species. An analysis of the genomic evolution suggests that the extant number of gene family members largely results from segmental duplications. A phylogenetic comparison of protein sequences and intron positions indicates an early diversification of separate branches within both gene families. These branches may represent proteins with different functions. Protein interaction analyses and expression studies of closely related family members suggest that even recently duplicated representatives may fulfill different functions. This work provides a basis for a defined further functional dissection of this important plant-specific signaling system.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Señalización del Calcio , Oryza/genética , Oryza/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Evolución Molecular , Exones , Genes de Plantas , Genómica , Intrones , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA