Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Biotechnol J ; 16(1): 39-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28436149

RESUMEN

Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.


Asunto(s)
Panicum/genética , Panicum/microbiología , Plantas Modificadas Genéticamente/genética , Biomasa , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/microbiología
2.
Plant Biotechnol J ; 15(6): 688-697, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27862852

RESUMEN

Transgenic Panicum virgatum L. silencing (KD) or overexpressing (OE) specific genes or a small RNA (GAUT4-KD, miRNA156-OE, MYB4-OE, COMT-KD and FPGS-KD) was grown in the field and aerial tissue analysed for biofuel production traits. Clones representing independent transgenic lines were established and senesced tissue was sampled after year 1 and 2 growth cycles. Biomass was analysed for wall sugars, recalcitrance to enzymatic digestibility and biofuel production using separate hydrolysis and fermentation. No correlation was found between plant carbohydrate content and biofuel production pointing to overriding structural and compositional elements that influence recalcitrance. Biomass yields were greater for all lines in the second year as plants establish in the field and standard amounts of biomass analysed from each line had more glucan, xylan and less ethanol (g/g basis) in the second- versus the first-year samples, pointing to a broad increase in tissue recalcitrance after regrowth from the perennial root. However, biomass from second-year growth of transgenics targeted for wall modification, GAUT4-KD, MYB4-OE, COMT-KD and FPGS-KD, had increased carbohydrate and ethanol yields (up to 12% and 21%, respectively) compared with control samples. The parental plant lines were found to have a significant impact on recalcitrance which can be exploited in future strategies. This summarizes progress towards generating next-generation bio-feedstocks with improved properties for microbial and enzymatic deconstruction, while providing a comprehensive quantitative analysis for the bioconversion of multiple plant lines in five transgenic strategies.


Asunto(s)
Panicum/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Biocombustibles , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Panicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
3.
J Environ Qual ; 44(6): 1938-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26641346

RESUMEN

The Powder River Basin in Wyoming and Montana contains the United States' largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering its potential use as supplemental irrigation water. We hypothesized that coalbed natural gas water, because of its high salinity and sodicity, would affect plant secondary metabolism (essential oils) and biomass accumulation. A 2-yr field study was conducted in Wyoming to investigate the effects of produced water on two traditional bioenergy feedstocks-corn ( L.) and switchgrass ( L.)-and four novel biofuel feedstock species-spearmint ( L.), Japanese cornmint ( L.), lemongrass [ (Nees ex Steud.) J.F. Watson]), and common wormwood ( L.). The four nontraditional feedstock species were chosen because they contain high-value plant chemicals that can offset production costs. Essential oil content was significantly affected by coalbed natural gas water in lemongrass and spearmint. Oil content differences between two spearmint harvests in the same year indicated that there were significant changes between the growth stage of the plant and essential oil content; the first harvest averaged 0.42 g of oil per 100 g biomass while the second harvest (harvested before flowering) yielded only 0.19 g oil per 100 g dry biomass. Results indicated that produced water can be used for short-period (2 yr) irrigation of crops. However, prolonged use of untreated produced water for irrigation would likely have deleterious long-term effects on the soil and plants unless the water was treated or diluted (mixed) with good-quality water.

4.
Plant Biotechnol J ; 12(9): 1163-73, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25051990

RESUMEN

Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of lignocellulosic biofuels. Even though we have learned a great deal about the biosynthesis of lignin, we do not fully understand its role in plant biology, which is needed for the rational design of engineered cell walls for lignocellulosic feedstocks. This review will recapitulate our knowledge of lignin biosynthesis and discuss how lignin has been modified and the consequences for the host plant.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Lignina/biosíntesis , Biomasa , Lignina/química , Lignina/metabolismo , Plantas/genética , Plantas/metabolismo
5.
Plant Biotechnol J ; 12(7): 914-24, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24751162

RESUMEN

Switchgrass (Panicum virgatum L.) is a leading candidate for a dedicated lignocellulosic biofuel feedstock owing to its high biomass production, wide adaptation and low agronomic input requirements. Lignin in cell walls of switchgrass, and other lignocellulosic feedstocks, severely limits the accessibility of cell wall carbohydrates to enzymatic breakdown into fermentable sugars and subsequently biofuels. Low-lignin transgenic switchgrass plants produced by the down-regulation of caffeic acid O-methyltransferase (COMT), a lignin biosynthetic enzyme, were analysed in the field for two growing seasons. COMT transcript abundance, lignin content and the syringyl/guaiacyl lignin monomer ratio were consistently lower in the COMT-down-regulated plants throughout the duration of the field trial. In general, analyses with fully established plants harvested during the second growing season produced results that were similar to those observed in previous greenhouse studies with these plants. Sugar release was improved by up to 34% and ethanol yield by up to 28% in the transgenic lines relative to controls. Additionally, these results were obtained using senesced plant material harvested at the end of the growing season, compared with the young, green tissue that was used in the greenhouse experiments. Another important finding was that transgenic plants were not more susceptible to rust (Puccinia emaculata). The results of this study suggest that lignin down-regulation in switchgrass can confer real-world improvements in biofuel yield without negative consequences to biomass yield or disease susceptibility.


Asunto(s)
Biocombustibles , Lignina/biosíntesis , Panicum/genética , Biomasa , Pared Celular/química , Celulosa/química , Resistencia a la Enfermedad/genética , Regulación hacia Abajo , Etanol/química , Regulación de la Expresión Génica de las Plantas , Lignina/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Panicum/crecimiento & desarrollo , Panicum/microbiología , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/metabolismo
6.
Plant Biotechnol J ; 10(2): 226-36, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21955653

RESUMEN

Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.


Asunto(s)
Productos Agrícolas/genética , Vectores Genéticos/genética , Panicum/genética , Productos Agrícolas/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Oryza/genética , Panicum/metabolismo , Plantas Modificadas Genéticamente , Transformación Genética
7.
Front Plant Sci ; 11: 843, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636863

RESUMEN

Switchgrass (Panicum virgatum L.) is a lignocellulosic perennial grass with great potential in bioenergy field. Lignocellulosic bioenergy crops are mostly resistant to cell wall deconstruction, and therefore yield suboptimal levels of biofuel. The one-carbon pathway (also known as C1 metabolism) is critical for polymer methylation, including that of lignin and hemicelluloses in cell walls. Folylpolyglutamate synthetase (FPGS) catalyzes a biochemical reaction that leads to the formation of folylpolyglutamate, an important cofactor for many enzymes in the C1 pathway. In this study, the putatively novel switchgrass PvFPGS1 gene was identified and its functional role in cell wall composition and biofuel production was examined by RNAi knockdown analysis. The PvFPGS1-downregulated plants were analyzed in the field over three growing seasons. Transgenic plants with the highest reduction in PvFPGS1 expression grew slower and produced lower end-of-season biomass. Transgenic plants with low-to-moderate reduction in PvFPGS1 transcript levels produced equivalent biomass as controls. There were no significant differences observed for lignin content and syringyl/guaiacyl lignin monomer ratio in the low-to-moderately reduced PvFPGS1 transgenic lines compared with the controls. Similarly, sugar release efficiency was also not significantly different in these transgenic lines compared with the control lines. However, transgenic plants produced up to 18% more ethanol while maintaining congruent growth and biomass as non-transgenic controls. Severity of rust disease among transgenic and control lines were not different during the time course of the field experiments. Altogether, the unchanged lignin content and composition in the low-to-moderate PvFPGS1-downregulated lines may suggest that partial downregulation of PvFPGS1 expression did not impact lignin biosynthesis in switchgrass. In conclusion, the manipulation of PvFPGS1 expression in bioenergy crops may be useful to increase biofuel potential with no growth penalty or increased susceptibility to rust in feedstock.

9.
Biotechnol Biofuels ; 12: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675183

RESUMEN

Background: The recalcitrance of cellulosic biomass is widely recognized as a key barrier to cost-effective biological processing to fuels and chemicals, but the relative impacts of physical, chemical and genetic interventions to improve biomass processing singly and in combination have yet to be evaluated systematically. Solubilization of plant cell walls can be enhanced by non-biological augmentation including physical cotreatment and thermochemical pretreatment, the choice of biocatalyst, the choice of plant feedstock, genetic engineering of plants, and choosing feedstocks that are less recalcitrant natural variants. A two-tiered combinatoric investigation of lignocellulosic biomass deconstruction was undertaken with three biocatalysts (Clostridium thermocellum, Caldicellulosiruptor bescii, Novozymes Cellic® Ctec2 and Htec2), three transgenic switchgrass plant lines (COMT, MYB4, GAUT4) and their respective nontransgenic controls, two Populus natural variants, and augmentation of biological attack using either mechanical cotreatment or cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment. Results: In the absence of augmentation and under the conditions tested, increased total carbohydrate solubilization (TCS) was observed for 8 of the 9 combinations of switchgrass modifications and biocatalysts tested, and statistically significant for five of the combinations. Our results indicate that recalcitrance is not a trait determined by the feedstock only, but instead is coequally determined by the choice of biocatalyst. TCS with C. thermocellum was significantly higher than with the other two biocatalysts. Both CELF pretreatment and cotreatment via continuous ball milling enabled TCS in excess of 90%. Conclusion: Based on our results as well as literature studies, it appears that some form of non-biological augmentation will likely be necessary for the foreseeable future to achieve high TCS for most cellulosic feedstocks. However, our results show that this need not necessarily involve thermochemical processing, and need not necessarily occur prior to biological conversion. Under the conditions tested, the relative magnitude of TCS increase was augmentation > biocatalyst choice > plant choice > plant modification > plant natural variants. In the presence of augmentation, plant modification, plant natural variation, and plant choice exhibited a small, statistically non-significant impact on TCS.

10.
J Agric Food Chem ; 66(33): 8744-8752, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30028607

RESUMEN

Dual production of biofuels and chemicals can increase the economic value of lignocellulosic bioenergy feedstocks. We compared the bioenergy potential of several essential oil (EO) crops with switchgrass ( Panicum virgatum L.), a crop chosen to benchmark biomass and lignocellulosic biofuel production. The EO crops of interest were peppermint ( Mentha × piperita L.), "Scotch" spearmint ( Mentha × gracilis Sole), Japanese cornmint ( Mentha canadensis L.), and sweet sagewort ( Artemisia annua L.). We also assessed each crop for EO production in a marginal production environment in Wyoming, USA, with irrigation and nitrogen (N) rates using a split-plot experimental design. Oil content ranged from 0.31 to 0.4% for Japanese cornmint, 0.23 to 0.26% for peppermint, 0.38 to 0.5% for spearmint, and the overall mean of sweet sagewort was 0.34%. Oil yields ranged from (in kg ha-1) 34 to 165 in Japanese cornmint, 25 to 108 in peppermint, 29.3 to 126 in spearmint, and 39.7 in sweet sagewort. EO production, but not composition, was sensitive to N fertilization. The alternative bioenergy crops and switchgrass produced similar amounts of ethanol from bench-scale simultaneous saccharification and fermentation assays. Value-added incomes from the EO proceeds were estimated to be between $1055 and $5132 ha-1 from peppermint, $1309 and $5580 ha-1 from spearmint, $510 and $2460 ha-1 from Japanese cornmint, and $3613 ha-1 from sweet sagewort under Wyoming growth conditions. The advantage of the proposed crops over traditional lignocellulosic species is the production of high-value natural products in addition to lignocellulosic biofuel production.


Asunto(s)
Artemisia/química , Biocombustibles/análisis , Mentha piperita/química , Mentha spicata/química , Aceites Volátiles/química , Panicum/química , Etanol/análisis , Aceites Volátiles/aislamiento & purificación
11.
Biotechnol Biofuels ; 11: 122, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713381

RESUMEN

BACKGROUND: Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. RESULTS: We identified and functionally characterized three switchgrass green tissue-specific promoters and assessed marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. CONCLUSIONS: Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.

12.
Front Plant Sci ; 9: 1114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127793

RESUMEN

Switchgrass (Panicum virgatum L.) is a leading lignocellulosic bioenergy feedstock. Cellulose is a major component of the plant cell walls and the primary substrate for saccharification. Accessibility of cellulose to enzymatic breakdown into fermentable sugars is limited by the presence of lignin in the plant cell wall. In this study, putatively novel switchgrass secondary cell wall cellulose synthase PvCesA4 and primary cell wall PvCesA6 genes were identified and their functional role in cellulose synthesis and cell wall composition was examined by overexpression and knockdown of the individual genes in switchgrass. The endogenous expression of PvCesA4 and PvCesA6 genes varied among including roots, leaves, stem, and reproductive tissues. Increasing or decreasing PvCesA4 and PvCesA6 expression to extreme levels in the transgenic lines resulted in decreased biomass production. PvCesA6-overexpressing lines had reduced lignin content and syringyl/guaiacyl lignin monomer ratio accompanied by increased sugar release efficiency, suggesting an impact of PvCesA6 expression levels on lignin biosynthesis. Cellulose content and cellulose crystallinity were decreased, while xylan content was increased in PvCesA4 and PvCesA6 overexpression or knockdown lines. The increase in xylan content suggests that the amount of non-cellulosic cell wall polysaccharide was modified in these plants. Taken together, the results show that the manipulation of the cellulose synthase genes alters the cell wall composition and availability of cellulose as a bioprocessing substrate.

13.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431741

RESUMEN

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Asunto(s)
Biocombustibles , Pared Celular/genética , Glucuronosiltransferasa/genética , Pectinas/biosíntesis , Biomasa , Boro/metabolismo , Calcio/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Productos Agrícolas , Glucuronosiltransferasa/química , Panicum/enzimología , Panicum/genética , Pectinas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Populus/enzimología , Populus/genética , Azúcares/metabolismo
14.
Biotechnol Biofuels ; 10: 12, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28053668

RESUMEN

BACKGROUND: The native recalcitrance of plants hinders the biomass conversion process using current biorefinery techniques. Down-regulation of the caffeic acid O-methyltransferase (COMT) gene in the lignin biosynthesis pathway of switchgrass reduced the thermochemical and biochemical conversion recalcitrance of biomass. Due to potential environmental influences on lignin biosynthesis and deposition, studying the consequences of physicochemical changes in field-grown plants without pretreatment is essential to evaluate the performance of lignin-altered plants. We determined the chemical composition, cellulose crystallinity and the degree of its polymerization, molecular weight of hemicellulose, and cellulose accessibility of cell walls in order to better understand the fundamental features of why biomass is recalcitrant to conversion without pretreatment. The most important is to investigate whether traits and features are stable in the dynamics of field environmental effects over multiple years. RESULTS: Field-grown COMT down-regulated plants maintained both reduced cell wall recalcitrance and lignin content compared with the non-transgenic controls for at least 3 seasons. The transgenic switchgrass yielded 35-84% higher total sugar release (enzymatic digestibility or saccharification) from a 72-h enzymatic hydrolysis without pretreatment and also had a 25-32% increase in enzymatic sugar release after hydrothermal pretreatment. The COMT-silenced switchgrass lines had consistently lower lignin content, e.g., 12 and 14% reduction for year 2 and year 3 growing season, respectively, than the control plants. By contrast, the transgenic lines had 7-8% more xylan and galactan contents than the wild-type controls. Gel permeation chromatographic results revealed that the weight-average molecular weights of hemicellulose were 7-11% lower in the transgenic than in the control lines. In addition, we found that silencing of COMT in switchgrass led to 20-22% increased cellulose accessibility as measured by the Simons' stain protocol. No significant changes were observed on the arabinan and glucan contents, cellulose crystallinity, and cellulose degree of polymerization between the transgenic and control plants. With the 2-year comparative analysis, both the control and transgenic lines had significant increases in lignin and glucan contents and hemicellulose molecular weight across the growing seasons. CONCLUSIONS: The down-regulation of COMT in switchgrass resulting in a reduced lignin content and biomass recalcitrance is stable in a field-grown trial for at least three seasons. Among the determined affecting factors, the reduced biomass recalcitrance of the COMT-silenced switchgrass, grown in the field conditions for two and three seasons, was likely related to the decreased lignin content and increased biomass accessibility, whereas the cellulose crystallinity and degree of its polymerization and hemicellulose molecular weights did not contribute to the reduction of recalcitrance significantly. This finding suggests that lignin down-regulation in lignocellulosic feedstock confers improved saccharification that translates from greenhouse to field trial and that lignin content and biomass accessibility are two significant factors for developing a reduced recalcitrance feedstock by genetic modification.

15.
Front Plant Sci ; 7: 1580, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833622

RESUMEN

Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.

16.
Genome Announc ; 2(4)2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25125642

RESUMEN

The benefits of using transgenic switchgrass with decreased levels of caffeic acid 3-O-methyltransferase (COMT) as biomass feedstock have been clearly demonstrated. However, its effect on the soil microbial community has not been assessed. Here we report metagenomic and metatranscriptomic analyses of root-associated soil from COMT switchgrass compared with nontransgenic counterparts.

17.
Biotechnol Biofuels ; 3: 9, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20459651

RESUMEN

BACKGROUND: Grasses are relatively recalcitrant to genetic transformation in comparison to certain dicotyledons, yet they constitute some of the most important biofuel crops. Genetic transformation of switchgrass (Panicum virgatum L.) has previously been reported after cocultivation of explants with Agrobacterium and biolistics of embryogenic calli. Experiments to increase transient gene expression in planta may lead to stable transformation methods with increased efficiency. RESULTS: A high-throughput Agrobacterium-mediated transient gene expression system has been developed for in planta inoculation of germinating switchgrass seedlings. Four different Agrobacterium strains were compared for their ability to infect switchgrass seedlings, and strain AGL1 was found to be the most infective. Wounding pretreatments such as sonication, mixing by vortex with carborundum, separation by centrifugation, vacuum infiltration, and high temperature shock significantly increased transient expression of a reporter gene (GUSPlus, a variation of the beta-glucuronidase (GUS) gene). The addition of L-cysteine and dithiothreitol in the presence of acetosyringone significantly increased GUS expression compared with control treatments, whereas the addition of 0.1% surfactants such as Silwet L77 or Li700 decreased GUS expression. 4-Methylumbelliferyl beta-D-galactopyranoside (MUG) assays showed a peak of beta-glucuronidase (GUS) enzyme activity 3 days after cocultivation with Agrobacterium harboring pCambia1305.2, whereas MUG assays showed a peak of enzyme activity 5 days after cocultivation with Agrobacterium harboring pCambia1305.1. CONCLUSION: Agrobacterium strains C58, GV3101 and EHA105 are less able to deliver transfer DNA to switchgrass seedlings (cultivar Alamo) compared with strain AGL1. Transient expression was increased by double or triple wounding treatments such as mixing by vortex with carborundum, sonication, separation by centrifugation, and heat shock. The addition of thiol compounds such as L-cysteine and dithiothreitol in combination with acetosyringone during cocultivation also increased transient expression. The combination of multiple wounding treatments along with the addition of thiol compounds during cocultivation increased transient expression levels from 6% to 54%. There were differences in temporal GUS expression induced by pCambia1305.1 and pCambia1305.2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA