Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 110(8): 087403, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473202

RESUMEN

We report a high-resolution resonant inelastic soft x-ray scattering study of the quantum magnetic spin-chain materials Li(2)CuO(2) and CuGeO(3). By tuning the incoming photon energy to the oxygen K edge, a strong excitation around 3.5 eV energy loss is clearly resolved for both materials. Comparing the experimental data to many-body calculations, we identify this excitation as a Zhang-Rice singlet exciton on neighboring CuO(4) plaquettes. We demonstrate that the strong temperature dependence of the inelastic scattering related to this high-energy exciton enables us to probe short-range spin correlations on the 1 meV scale with outstanding sensitivity.

2.
J Phys Condens Matter ; 21(12): 126002, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21817474

RESUMEN

Hot neutron diffraction has been used to study the magnetic structure of GdCu(6). Long range antiferromagnetic order with a propagation vector of (h 0 0) has been determined below the Néel temperature T(N) = 16 K from the neutron powder refinement. The magnetic moments are oriented normal to the a direction, which is in agreement with previously reported results of bulk experiments. Mean field model calculations suggest that the magnetic structure is a helix.

3.
Nat Commun ; 7: 10563, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26884151

RESUMEN

Strongly correlated insulators are broadly divided into two classes: Mott-Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA