Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Chem Inf Model ; 64(10): 4158-4167, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38751042

RESUMEN

The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the ß-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the ß-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the ß-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the ß-switch conformation.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos Cíclicos , Complejo GPIb-IX de Glicoproteína Plaquetaria , Unión Proteica , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Conformación Proteica , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Humanos , Sitios de Unión
2.
Proteins ; 89(5): 502-511, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33340163

RESUMEN

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Asunto(s)
Actinobacteria/química , Proteínas Bacterianas/química , Calcio/química , Hidrolasas de Éster Carboxílico/química , Contaminantes Ambientales/química , Tereftalatos Polietilenos/química , Actinobacteria/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calcio/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Contaminantes Ambientales/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Hidrólisis , Modelos Moleculares , Mutación , Tereftalatos Polietilenos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
3.
J Chem Inf Model ; 61(10): 5161-5171, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34549581

RESUMEN

We have performed dynamic docking between a prototypic G-protein-coupled receptor (GPCR) system, the ß2-adrenergic receptor, and its antagonist, alprenolol, using one of the enhanced conformation sampling methods, multicanonical molecular dynamics (McMD), which does not rely on any prior knowledge for the definition of the reaction coordinate. Although we have previously applied our McMD-based dynamic docking protocol to various globular protein systems, its application to GPCR systems would be difficult because of their complicated design, which include a lipid bilayer, and because of the difficulty in sampling the configurational space of a binding site that exists deep inside the GPCR. Our simulations sampled a wide array of ligand-bound and ligand-unbound structures, and we measured 427 binding events during our 48 µs production run. Analysis of the ensemble revealed several stable and meta-stable structures, where the most stable structure at the global free energy minimum matches the experimental one. Additional canonical MD simulations were used for refinement and validation of the structures, revealing that most of the intermediates are sufficiently stable to trap the ligand in these intermediary states and furthermore validated our prediction results. Given the difficulty in reaching the orthosteric binding site, chemical optimization of the compound for the second ranking configuration, which binds near the pocket's entrance, might lead to a high-affinity allosteric inhibitor. Accordingly, we show that the application of our methodology can be used to provide crucial insights for the rational design of drugs that target GPCRs.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Sitios de Unión , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/metabolismo
4.
J Comput Chem ; 41(17): 1606-1615, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32267975

RESUMEN

Multicanonical molecular dynamics based dynamic docking was used to exhaustively search the configurational space of an inhibitor binding to the N-terminal domain of heat-shock protein 90 (Hsp90). The obtained structures at 300 K cover a wide structural ensemble, with the top two clusters ranked by their free energy coinciding with the native binding site. The representative structure of the most stable cluster reproduced the experimental binding configuration, but an interesting conformational change in Hsp90 could be observed. The combined effects of solvation and ligand binding shift the equilibrium from a preferred loop-in conformation in the unbound state to an α-helical one in the bound state for the flexible lid region of Hsp90. Thus, our dynamic docking method is effective at predicting the native binding site while exhaustively sampling a wide configurational space, modulating the protein structure upon binding.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Algoritmos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Ligandos
5.
Nucleic Acids Res ; 45(D1): D282-D288, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27789697

RESUMEN

The Protein Data Bank Japan (PDBj, http://pdbj.org), a member of the worldwide Protein Data Bank (wwPDB), accepts and processes the deposited data of experimentally determined macromolecular structures. While maintaining the archive in collaboration with other wwPDB partners, PDBj also provides a wide range of services and tools for analyzing structures and functions of proteins. We herein outline the updated web user interfaces together with RESTful web services and the backend relational database that support the former. To enhance the interoperability of the PDB data, we have previously developed PDB/RDF, PDB data in the Resource Description Framework (RDF) format, which is now a wwPDB standard called wwPDB/RDF. We have enhanced the connectivity of the wwPDB/RDF data by incorporating various external data resources. Services for searching, comparing and analyzing the ever-increasing large structures determined by hybrid methods are also described.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Japón , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Interfaz Usuario-Computador , Navegador Web
6.
Biochemistry ; 57(36): 5289-5300, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30110540

RESUMEN

A cutinase-type polyesterase from Saccharomonospora viridis AHK190 (Cut190) has been shown to degrade the inner block of polyethylene terephthalate. A unique feature of Cut190 is that its function and stability are regulated by Ca2+ binding. Our previous crystal structure analysis of Cut190S226P showed that one Ca2+ binds to the enzyme, which induces large conformational changes in several loop regions to stabilize an open conformation [Miyakawa, T., et al. (2015) Appl. Microbiol. Biotechnol. 99, 4297]. In this study, to analyze the substrate recognition mechanism of Cut190, we determined the crystal structure of the inactive form of a Cut190 mutant, Cut190*S176A, in complex with calcium ions and/or substrates. We found that three calcium ions bind to Cut190*S176A, which is supported by analysis using native mass spectrometry experiments and 3D Reference Interaction Site Model calculations. The complex structures with the two substrates, monoethyl succinate and monoethyl adipate (engaged and open forms), presumably correspond to the pre- and post-reaction states, as the ester bond is close to the active site and pointing outward from the active site, respectively, for the two complexes. Ca2+ binding induces the pocket to open, enabling the substrate to access the pocket more easily. Molecular dynamics simulations suggest that a post-reaction state in the engaged form presumably exists between the experimentally observed forms, indicating that the substrate would be cleaved in the engaged form and then requires the enzyme to change to the open form to release the product, a process that Ca2+ can greatly accelerate.


Asunto(s)
Actinomycetales/enzimología , Calcio/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Tereftalatos Polietilenos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
7.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 415-425, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29246508

RESUMEN

Endo-1,3-ß-glucanase from Cellulosimicrobium cellulans is composed of a catalytic domain and a carbohydrate-binding module. We have determined the X-ray crystal structure of the catalytic domain at a high resolution of 1.66Å. The overall fold is a sandwich-like ß-jelly roll architecture like the enzymes in the glycoside hydrolase family 16. The substrate-binding cleft has a length and a width of ~28 and ~15Å, respectively, which is thought to be capable of accommodating at least six glucopyranose units. Laminarihexaose was placed into the substrate-binding cleft, namely at the subsites +2 to -4 from the reducing end, and the complex structure was analyzed using molecular dynamics simulations (MD) and using a rotamer search of the pocket. During the MD simulations, the substrate fluctuated more than the enzyme, where the residues at the subsites toward the non-reducing end fluctuated more than those toward the reducing end. Little conformational change of the protein was observed for the subsites +1 and +2, indicating that the glucose's position could be tightly restricted inside the pocket. Substrate binding experiments using isothermal titration calorimetry showed that the binding affinity of laminaritriose was higher than that of laminaribiose and similar to those of other longer laminarioligosaccharides. Taken together, the substrates mainly bind to the subsites -1 to -3 with the highest affinity, while the part bound to the reducing end would be hydrolyzed.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/química , Glucano Endo-1,3-beta-D-Glucosidasa/química , Termodinámica , Proteínas Bacterianas/metabolismo , Sitios de Unión , Unión Competitiva , Dominio Catalítico , Cristalografía por Rayos X , Disacáridos/química , Disacáridos/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Cinética , Simulación de Dinámica Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
8.
ACS Omega ; 9(3): 3412-3422, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284074

RESUMEN

Flavin mononucleotide riboswitches are common among many pathogenic bacteria and are therefore considered to be an attractive target for antibiotics development. The riboswitch binds riboflavin (RBF, also known as vitamin B2), and although an experimental structure of their complex has been solved with the ligand bound deep inside the RNA molecule in a seemingly unreachable state, the binding mechanism between these molecules is not yet known. We have therefore used our Multicanonical Molecular Dynamics (McMD)-based dynamic docking protocol to analyze their binding mechanism by simulating the binding process between the riboswitch aptamer domain and the RBF, starting from the apo state of the riboswitch. Here, the refinement stage was crucial to identify the native binding configuration, as several other binding configurations were also found by McMD-based docking simulations. RBF initially binds the interface between P4 and P6 including U61 and G62, which forms a gateway where the ligand lingers until this gateway opens sufficiently to allow the ligand to pass through and slip into the hidden binding site including A48, A49, and A85.

9.
J Chem Theory Comput ; 20(1): 7-17, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38148034

RESUMEN

In all-atom (AA) molecular dynamics (MD) simulations, the rugged energy profile of the force field makes it challenging to reproduce spontaneous structural changes in biomolecules within a reasonable calculation time. Existing coarse-grained (CG) models, in which the energy profile is set to a global minimum around the initial structure, are unsuitable to explore the structural dynamics between metastable states far away from the initial structure without any bias. In this study, we developed a new hybrid potential composed of an artificial intelligence (AI) potential and minimal CG potential related to the statistical bond length and excluded volume interactions to accelerate the transition dynamics while maintaining the protein character. The AI potential is trained by energy matching using a diverse structural ensemble sampled via multicanonical (Mc) MD simulation and the corresponding AA force field energy, profile of which is smoothed by energy minimization. By applying the new methodology to chignolin and TrpCage, we showed that the AI potential can predict the AA energy with significantly high accuracy, as indicated by a correlation coefficient (R-value) between the true and predicted energies exceeding 0.89. In addition, we successfully demonstrated that CGMD simulation based on the smoothed hybrid potential can significantly enhance the transition dynamics between various metastable states while preserving protein properties compared to those obtained with conventional CGMD and AAMD.

10.
Methods Mol Biol ; 2552: 151-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36346591

RESUMEN

In this chapter, we describe a protocol to estimate the thermal stability of single domain antibodies (sdAbs) using molecular dynamics (MD) simulations. This method measures the Q-value, the fraction of the native contacts, along the trajectory of high-temperature MD simulations starting from the experimental X-ray structure. We show a good correlation between the Q-value and the experimental melting temperature (Tm) in seven sdAbs. Assessing the Q-value on a per-residue level enabled us to identify residues that contribute to the instability and thus demonstrate which residues could be mutated to improve the stability and have later been validated by experiments. Our protocol extends beyond the application on sdAbs, as it is also suitable for other proteins and to determine the interfacial stability between protein and ligand.


Asunto(s)
Simulación de Dinámica Molecular , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/química , Estabilidad Proteica , Proteínas/química , Temperatura
11.
Commun Biol ; 6(1): 349, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997643

RESUMEN

The intrinsically disordered region (IDR) of Bim binds to the flexible cryptic site of Bcl-xL, a pro-survival protein involved in cancer progression that plays an important role in initiating apoptosis. However, their binding mechanism has not yet been elucidated. We have applied our dynamic docking protocol, which correctly reproduced both the IDR properties of Bim and the native bound configuration, as well as suggesting other stable/meta-stable binding configurations and revealed the binding pathway. Although the cryptic site of Bcl-xL is predominantly in a closed conformation, initial binding of Bim in an encounter configuration leads to mutual induced-fit binding, where both molecules adapt to each other; Bcl-xL transitions to an open state as Bim folds from a disordered to an α-helical conformation while the two molecules bind each other. Finally, our data provides new avenues to develop novel drugs by targeting newly discovered stable conformations of Bcl-xL.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína bcl-X , Sitios de Unión , Dominios Proteicos , Proteína 11 Similar a Bcl2/metabolismo
12.
Biophys Physicobiol ; 20(4): e200047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38344029

RESUMEN

A small and flexible molecule, ribocil A (non-binder) or B (binder), binds to the deep pocket of the aptamer domain of the FMN riboswitch, which is an RNA molecule. This binding was studied by mD-VcMD, which is a generalized-ensemble simulation method. Ribocil A and B are structurally similar because they are optical isomers to each other. In the initial conformation of simulation, the ligands and the aptamer were completely dissociated in explicit solvent. The aptamer-ribocil B binding was stronger than the aptamer-ribocil A binding, which agrees with experiments. The computed free-energy landscape for the aptamer-ribocil B binding was funnel-like, whereas that for the aptamer-ribocil A binding was rugged. When passing through the gate (named "front gate") of the binding pocket, each ligand interacted with bases of the riboswitch by non-native π-π stackings, and the stackings restrained the ligand's orientation to be advantageous to reach the binding site smoothly. When the ligands reached the binding site in the pocket, the non-native stackings were replaced by the native stackings. The ligand's orientation restriction is discussed referring to a selection mechanism reported in an earlier work on a drug-GPCR interaction. The present simulation showed another pathway leading the ligands to the binding site. The gate ("rear gate") for this pathway was located completely opposite to the front gate on the aptamer's surface. However, the approach from the rear gate required overcoming a free-energy barrier regarding ligand's rotation before reaching the binding site.

13.
Protein Sci ; 32(10): e4775, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661929

RESUMEN

We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.

14.
Biophys Rev ; 14(6): 1349-1358, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36659995

RESUMEN

Multicanonical molecular dynamics (McMD)-based dynamic docking is a powerful tool to not only predict the native binding configuration between two flexible molecules, but it can also be used to accurately simulate the binding/unbinding pathway. Furthermore, it can also predict alternative binding sites, including allosteric ones, by employing an exhaustive sampling approach. Since McMD-based dynamic docking accurately samples binding/unbinding events, it can thus be used to determine the molecular mechanism of binding between two molecules. We developed the McMD-based dynamic docking methodology based on the powerful, but woefully underutilized McMD algorithm, combined with a toolset to perform the docking and to analyze the results. Here, we showcase three of our recent works, where we have applied McMD-based dynamic docking to advance the field of computational drug design. In the first case, we applied our method to perform an exhaustive search between Hsp90 and one of its inhibitors to successfully predict the native binding configuration in its binding site, as we refined our analysis methods. For our second case, we performed an exhaustive search of two medium-sized ligands and Bcl-xL, which has a cryptic binding site that differs greatly between the apo and holo structures. Finally, we performed a dynamic docking simulation between a membrane-embedded GPCR molecule and a high affinity ligand that binds deep within its receptor's pocket. These advanced simulations showcase the power that the McMD-based dynamic docking method has, and provide a glimpse of the potential our methodology has to unravel and solve the medical and biophysical issues in the modern world. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-01010-z.

15.
Biophys Rev ; 14(6): 1233-1238, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36532871

RESUMEN

Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank (wwPDB) in 2003 to manage the core archive of the Protein Data Bank (PDB), collaborating with RCSB-PDB in the USA and PDBe in Europe. As the former head of PDBj and also an expert in structural bioinformatics, he has grown PDBj to become a well-known data center within the structural biology community and developed several related databases, tools and integrated with new technologies, such as the semantic web, as primary services offered by PDBj.

16.
Protein Sci ; 31(1): 173-186, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664328

RESUMEN

Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB-related secondary database data, original web-based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM-Arc for computational structure models, and XRDa for raw X-ray diffraction images, both of which promote open science in the structural biology community. During the COVID-19 pandemic, PDBj has also started to provide feature pages for COVID-19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID-19 outreach content for high school students and teachers.


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Animales , Aniversarios y Eventos Especiales , COVID-19/metabolismo , Humanos , Japón , Modelos Moleculares , Conformación Proteica , Proteínas/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Programas Informáticos , Interfaz Usuario-Computador , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Sci Rep ; 12(1): 13792, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963875

RESUMEN

A GA-guided multidimensional virtual-system coupled molecular dynamics (GA-mD-VcMD) simulation was conducted to elucidate binding mechanisms of a middle-sized flexible molecule, bosentan, to a GPCR protein, human endothelin receptor type B (hETB). GA-mD-VcMD is a generalized ensemble method that produces a free-energy landscape of the ligand-receptor binding by searching large-scale motions accompanied with stable maintenance of the fragile cell-membrane structure. All molecular components (bosentan, hETB, membrane, and solvent) were represented with an all-atom model. Then sampling was conducted from conformations where bosentan was distant from the binding site in the hETB binding pocket. The deepest basin in the resultant free-energy landscape was assigned to native-like complex conformation. The following binding mechanism was inferred. First, bosentan fluctuating randomly in solution is captured using a tip region of the flexible N-terminal tail of hETB via nonspecific attractive interactions (fly casting). Bosentan then slides occasionally from the tip to the root of the N-terminal tail (ligand-sliding). During this sliding, bosentan passes the gate of the binding pocket from outside to inside of the pocket with an accompanying rapid reduction of the molecular orientational variety of bosentan (orientational selection). Last, in the pocket, ligand-receptor attractive native contacts are formed. Eventually, the native-like complex is completed. The bosentan-captured conformations by the tip-region and root-region of the N-terminal tail correspond to two basins in the free-energy landscape. The ligand-sliding corresponds to overcoming of a free-energy barrier between the basins.


Asunto(s)
Simulación de Dinámica Molecular , Bosentán , Humanos , Ligandos , Unión Proteica , Conformación Proteica
18.
Methods Mol Biol ; 2266: 187-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33759128

RESUMEN

Multicanonical molecular dynamics (McMD)-based dynamic docking has been applied to predict the native binding configurations for several protein receptors and their ligands. Due to the enhanced sampling capabilities of McMD, it can exhaustively sample bound and unbound ligand configurations, as well as receptor conformations, and thus enables efficient sampling of the conformational and configurational space, not possible using canonical MD simulations. As McMD samples a wide configurational space, extensive analysis is required to study the diverse ensemble consisting of bound and unbound structures. By projecting the reweighted ensemble onto the first two principal axes obtained via principal component analysis of the multicanonical ensemble, the free energy landscape (FEL) can be obtained. Further analysis produces representative structures positioned at the local minima of the FEL, where these structures are then ranked by their free energy. In this chapter, we describe our dynamic docking methodology, which has successfully reproduced the native binding configuration for small compounds, medium-sized compounds, and peptide molecules.


Asunto(s)
Anticuerpos/química , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Péptidos/química , Proteínas/química , Secretasas de la Proteína Precursora del Amiloide/química , Anticuerpos Monoclonales Humanizados/química , Ácido Aspártico Endopeptidasas/química , Quinasa 2 Dependiente de la Ciclina/química , Bases de Datos de Proteínas , Ligandos , Modelos Moleculares , Conformación Molecular , Análisis de Componente Principal , Unión Proteica , Temperatura
19.
J Phys Chem B ; 125(49): 13376-13384, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34856806

RESUMEN

We have applied our advanced multicanonical molecular dynamics (McMD)-based dynamic docking methodology to investigate the binding mechanism of an HIV-1 Nef protein epitope to the Asian-dominant allele human leukocyte antigen (HLA)-A*2402. Even though pMHC complex formation [between a Major histocompatibility complex (MHC) class I molecule, which is encoded by an HLA allele, and an antigen peptide] is one of the fundamental processes of the adaptive human immune response, its binding mechanism has not yet been well studied, partially due to the high allelic variation of HLAs in the population. We have used our developed McMD-based dynamic docking method and have successfully reproduced the native complex structure, which is located near the free energy global minimum. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that the peptide binding is initially driven by the highly positively charged N-terminus of the peptide that is attracted to the various negatively charged residues on the MHC molecule's surface. Upon nearing the pocket, the second tyrosine residue of the peptide anchors the peptide by strongly binding to the B-site of the MHC molecule via hydrophobic driven interactions, resulting in a very strong bound complex structure. Our methodology can be effectively used to predict the bound complex structures between MHC molecules and their antigens to study their binding mechanism in close detail, which would help with the development of new vaccines against cancers, as well as viral infections such as HIV and COVID-19.


Asunto(s)
Antígenos HLA-A/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Péptidos
20.
Methods Enzymol ; 648: 159-185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579402

RESUMEN

Thermophilic cutinases are mainly obtained from thermophilic actinomycetes, and are categorized into two groups, i.e., those with higher (>70°C) or lower (<70°C) thermostabilities. The thermostabilities of cutinases are highly relevant to their ability to degrade polyethylene terephthalate (PET). Many crystal structures of thermophilic cutinases have been solved, showing that their overall backbone structures are identical, irrespective of their ability to hydrolyze PET. One of the unique properties of cutinases is that metal ion-binding on the enzyme's surface both elevates their melting temperatures and activates the enzyme. In this chapter, we introduce the methodology for the identification and cloning of thermophilic cutinases from actinomycetes. For detailed characterization of cutinases, we describe the approach to analyze the intricate dynamics of the enzyme, based on its crystal structures complexed with metal ions and model substrates using a combination of experimental and computational techniques.


Asunto(s)
Actinobacteria , Actinomyces , Hidrolasas de Éster Carboxílico , Tereftalatos Polietilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA