Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neurobiol Dis ; 32(3): 442-53, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18804535

RESUMEN

Preconditioning brain with a sub-lethal stressor can temporarily generate a damage-refractory state. Microarray analyses have defined the changes in hippocampal gene expression that follow brief preconditioning seizures, but not the transcriptome after a prolonged and otherwise injurious seizure in previously preconditioned brain. Presently, microarray analysis was performed 24 h after status epilepticus in mice that had received previously either seizure preconditioning (tolerance) or sham-preconditioning (injury). Transcriptional changes in the hippocampal CA3 subfield of >or=2 fold were detected for 1357 genes in the tolerance group compared to a non-seizure control group, with 54% up-regulated. Of these regulated genes, 792 were also regulated in the injury group. Among the remaining 565 genes regulated only in tolerance, 73% were down-regulated. Analysis of the genes differentially suppressed in tolerance identified calcium signaling, ion channels and excitatory neurotransmitter receptors, and the synapse as over-represented among pathways, functions and compartments. Finally, 12 days continuous EEG recordings determined mice with induced tolerance had fewer spontaneous electrographic seizures compared to the injury group. Our data suggest the transcriptional phenotype of neuroprotection in tolerance may be dictated by the biology of the preconditioning stressor, functions by transcriptional reduction of vulnerability to excitotoxicity, and has anti-epileptogenic effects.


Asunto(s)
Calcio/metabolismo , Hipocampo/fisiopatología , Neuronas/fisiología , Estado Epiléptico/fisiopatología , Análisis de Varianza , Animales , Muerte Celular/genética , Cicloheximida/farmacología , Electroencefalografía , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipocampo/lesiones , Hipocampo/patología , Canales Iónicos/genética , Ácido Kaínico/farmacología , Potenciación a Largo Plazo , Ratones , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Neurotransmisores/genética , Estado Epiléptico/genética , Estado Epiléptico/patología
2.
Am J Pathol ; 171(4): 1258-68, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17702891

RESUMEN

Experimentally evoked seizures can activate the intrinsic mitochondrial cell death pathway, components of which are modulated in the hippocampus of patients with temporal lobe epilepsy. Bcl-2 family proteins are critical regulators of mitochondrial dysfunction, but their significance in this setting remains primarily untested. Presently, we investigated the mitochondrial pathway and role of anti-apoptotic Bcl-2 proteins using a mouse model of seizure-induced neuronal death. Status epilepticus was evoked in mice by intra-amygdala kainic acid, causing cytochrome c release, processing of caspases 9 and 7, and death of ipsilateral hippocampal pyramidal neurons. Seizures caused a rapid decline in hippocampal Bcl-w levels not seen for either Bcl-2 or Bcl-xl. To test whether endogenous Bcl-w was functionally significant for neuronal survival, we investigated hippocampal injury after seizures in Bcl-w-deficient mice. Seizures induced significantly more hippocampal CA3 neuronal loss and DNA fragmentation in Bcl-w-deficient mice compared with wild-type mice. Quantitative electroencephalography analysis also revealed that Bcl-w-deficient mice display a neurophysiological phenotype whereby there was earlier polyspike seizure onset. Finally, we detected higher levels of Bcl-w in hippocampus from temporal lobe epilepsy patients compared with autopsy controls. These data identify Bcl-w as an endogenous neuroprotectant that may have seizure-suppressive functions.


Asunto(s)
Hipocampo/patología , Mitocondrias/metabolismo , Neuronas/patología , Proteínas/fisiología , Estado Epiléptico/patología , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Caspasa 7/metabolismo , Caspasa 9/metabolismo , Citocromos c/metabolismo , Fragmentación del ADN , Electroencefalografía , Electrofisiología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Ácido Kaínico/toxicidad , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Neuronas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
4.
Exp Neurol ; 202(2): 410-20, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16919273

RESUMEN

Seizures, particularly when prolonged, may cause neuronal loss within vulnerable brain structures such as the hippocampus, in part by activating programmed (apoptotic) cell death pathways. Experimental modeling suggests that seizures activate tumor necrosis factor receptor 1 (TNFR1) and engage downstream pro- and anti-apoptotic signaling cascades. Whether such TNFR1-mediated signaling occurs in human temporal lobe epilepsy (TLE) is unknown. Presently, we examined this pathway in hippocampus surgically obtained from refractory TLE patients and contrasted findings to matched autopsy controls. Western blotting established that total protein levels of the TNFR1 proximal signaling adaptor TNFR-associated protein with death domain (TRADD), cleaved initiator caspase-8 and apoptosis signal-regulating kinase 1 (ASK1) were higher in TLE samples than controls. Intracellular distribution analyses revealed raised cytoplasmic levels of TNFR1, TRADD and the caspase-8 recruitment adaptor Fas-associated protein with death domain (FADD), and higher levels of TRADD and cleaved caspase-8 in the microsomal fraction, in TLE samples. Immunoprecipitation studies detected TRADD-FADD binding, and fluorescence microscopy revealed TRADD co-localization with FADD in TLE hippocampus. These data suggest that TNFR1 signaling is engaged in the hippocampus of patients with refractory temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Adulto , Animales , Western Blotting/métodos , Caspasa 8/metabolismo , Epilepsia del Lóbulo Temporal/patología , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Indoles , MAP Quinasa Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Cambios Post Mortem , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA