Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(6): 2364-2373, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674663

RESUMEN

In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Transducción de Señal , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Desarrollo de la Planta/inmunología , Inmunidad de la Planta , Plantas/genética , Plantas/inmunología , Reproducción , Factores de Transcripción/metabolismo
2.
Plant Cell ; 30(6): 1199-1219, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29794063

RESUMEN

The phytohormone network consisting of jasmonate, ethylene, PHYTOALEXIN-DEFICIENT4, and salicylic acid signaling is required for the two modes of plant immunity, pattern-triggered immunity (PTI), and effector-triggered immunity (ETI). A previous study showed that during PTI, the transcriptional responses of over 5000 genes qualitatively depend on complex interactions between the network components. However, the role of the network in transcriptional reprogramming during ETI and whether it differs between PTI and ETI remain elusive. Here, we generated time-series RNA-sequencing data of Arabidopsis thaliana wild-type and combinatorial mutant plants deficient in components of the network upon challenge with virulent or ETI-triggering avirulent strains of the foliar bacterial pathogen Pseudomonas syringae Resistant plants such as the wild type achieved high-amplitude transcriptional reprogramming 4 h after challenge with avirulent strains and sustained this transcriptome response. Strikingly, susceptible plants including the quadruple network mutant showed almost identical transcriptome responses to resistant plants but with several hours delay. Furthermore, gene coexpression network structure was highly conserved between the wild type and quadruple mutant. Thus, in contrast to PTI, the phytohormone network is required only for achieving high-amplitude transcriptional reprogramming within the early time window of ETI against this bacterial pathogen.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad de la Planta/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
Proc Natl Acad Sci U S A ; 114(28): 7456-7461, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652328

RESUMEN

Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1, HAI2, and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.


Asunto(s)
Ácido Abscísico/química , Arabidopsis/inmunología , Arabidopsis/microbiología , Ciclopentanos/química , Sistema de Señalización de MAP Quinasas , Oxilipinas/química , Aminoácidos/química , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Indenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/química , Inmunidad de la Planta , Proteína Fosfatasa 2C/metabolismo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Transducción de Señal , Virulencia
4.
Curr Opin Plant Biol ; 38: 164-172, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28624670

RESUMEN

Plant hormones regulate physiological responses in plants, including responses to pathogens and beneficial microbes. The last decades have provided a vast amount of evidence about the contribution of different plant hormones to plant immunity, and also of how they cooperate to orchestrate immunity activation, in a process known as hormone crosstalk. In this review we highlight the complexity of hormonal crosstalk in immunity and approaches currently being used to further understand this process, as well as perspectives to engineer hormone crosstalk for enhanced pathogen resistance and overall plant fitness.


Asunto(s)
Enfermedades de las Plantas/inmunología , Plantas/inmunología , Plantas/metabolismo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
5.
Annu Rev Phytopathol ; 55: 401-425, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28645231

RESUMEN

Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.


Asunto(s)
Evolución Biológica , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Fenómenos Fisiológicos de las Plantas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA