Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Fish Dis ; 47(8): e13960, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708552

RESUMEN

In this issue, we established rapid, cost-effective, and simple detection methods including recombines polymerase amplification with lateral flow dipstick (RPA-LFD) and real-time RPA for cyprinid herpesvirus 3(CyHV-3), and evaluated their sensitivity, specificity, and applicability, the real-time RPA method could achieve sensitive diagnosis of CyHV-3 within 1.3 copies per reaction, respectively. The real-time RPA method is 10-fold more sensitive than RPA-LFD method. The exact number of CyHV-3 can be calculated in each sample by real-time RPA. The sera from koi also can be tested in these methods. In addition, no cross-reaction was observed with other related pathogens, including carp oedema virus (CEV), spring viraemia of carp virus (SVCV), cyprinid herpesvirus 1(CyHV-1), cyprinid herpesvirus 2(CyHV-2), type I grass carp reovirus (GCRV-I), type II GCRV (GCRV-II), type III GCRV (GCRV-III), and Aeromonas hydrophila.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Herpesviridae , Herpesviridae , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Animales , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Herpesviridae/aislamiento & purificación , Herpesviridae/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/virología , Carpas/virología , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo
2.
J Fish Dis ; 46(8): 873-886, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37227769

RESUMEN

Koi herpesvirus (KHV) is the causative agent of a koi herpesvirus disease (KHVD) inducing high mortality rates in common carp and koi (Cyprinus carpio). No widespread effective vaccination strategy has been implemented yet, which is partly due to side effects of the immunized fish. In this study, we present an evaluation of the purification of infectious KHV from host cell protein and DNA, using the steric exclusion chromatography. The method is related to conventional polyethylene glycol (PEG) precipitation implemented in a chromatographic set-up and has been applied for infectious virus particle purification with high recoveries and impurity removal. Here, we achieved a yield of up to 55% of infectious KHV by using 12% PEG (molecular weight of 6 kDa) at pH 7.0. The recoveries were higher when using chromatographic cellulose membranes with 3-5 µm pores in diameter instead of 1 µm. The losses were assumed to originate from dense KHV precipitates retained on the membranes. Additionally, the use of >0.6 M NaCl was shown to inactivate infectious KHV. In summary, we propose a first step towards a purification procedure for infectious KHV with a possible implementation in fish vaccine manufacturing.


Asunto(s)
Carpas , Enfermedades Transmisibles , Enfermedades de los Peces , Infecciones por Herpesviridae , Herpesviridae , Animales , Enfermedades de los Peces/prevención & control , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/veterinaria , Cromatografía en Gel
3.
Microb Pathog ; 166: 105510, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35421555

RESUMEN

Tilapia lake virus disease (TiLVD) caused by Tilapia lake virus (TiLV) is a great threat to the global tilapia culture industry. Effective prevention and control strategies have not been developed due to limited basic research of pathogenesis of TiLVD. Cell lines from different fish species have been found to be permissive to TiLV infection. In the current study, we comprehensively analyzed TiLV susceptibilities to 10 permanent growing fish cell lines. We found that the highest viral titers were generated onto TiB cells originated from the tilapia species Oreochromis mossambicus, MSF from the largemouth bass Micropterus salmoides, CAMK from the hybrid snakehead Channa argus × Channa maculata and SS derived from the perch species Siniperca chuatsi. Viral copy numbers from these four cell lines ranged from 4 × 107 copies/µL to 4.6 × 108 copies/µL. Confocal immunofluorescent microscopy also indicated that all 10 cell lines can support varying degrees of viral infection and replication. TiLV particles can be observed in cells from randomly selected three fish species using electron microscope. This study will assist in research and development of prevention and control of TiLVD.


Asunto(s)
Enfermedades de los Peces , Virus ARN , Tilapia , Virus , Animales , Línea Celular , Virus ADN , Susceptibilidad a Enfermedades
4.
J Fish Dis ; 45(7): 1033-1043, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35475515

RESUMEN

Largemouth bass ranavirus disease (LMBVD) caused by largemouth bass ranavirus (LMBV) has resulted in severe economic losses in the largemouth bass (Micropterus salmoides) farming industry in China. Early and accurate diagnosis is the key measure for the prevention and control of LMBVD. In this study, a quantitative polymerase chain reaction (qPCR) and a real-time recombinase-aided amplification (real-time RAA) assay were established for the detection of LMBV. The sensitivity and specificity of these two methods, and the efficacy for detection of LMBV from clinical samples were also evaluated. Results showed that the real-time RAA reaction was completed in <30 min at 39℃ with a detection limit of 58.3 copies, while qPCR reaction required 60 min with a detection limit of 5.8 copies. Both methods were specific for LMBV, where no cross-reactions observed with the other tested fish pathogens. Comparing the amplification results of both assays to the results obtained by virus isolation using 53 clinical tissue samples, results showed that the clinical sensitivity of real-time RAA and qPCR were 93.75% and 100% respectively, and the clinical specificity of both were 100%. Our results showed that qPCR is more suitable for quantitative analysis and accurate detection of LMBV in the laboratory, while real-time RAA is more suitable as a point-of-care diagnostic tool for on-site detection and screening of LMBV under farm conditions and in poorly equipped laboratories.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Ranavirus , Animales , Infecciones por Virus ADN/diagnóstico , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/diagnóstico , Ranavirus/genética , Recombinasas , Sensibilidad y Especificidad
5.
Microb Pathog ; 152: 104602, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33157219

RESUMEN

Vaccine immunization is currently the only effective way to prevent and control the grass carp haemorrhagic disease, and the primary pathogen in these infections is grass carp reovirus genotype II (GCRV-II) for which there is no commercial vaccine. In this study, we evaluated the safety of the GCRV-II avirulent strain GD1108 which isolated in the early stage of the laboratory through continuously passed in grass carp. The immunogenicity and protective effects were evaluated after immunization by injection and immersion. The avirulent strain GD1108 could infect and replicate in the fish which did not revert to virulence after continuous passage. No adverse side effects were observed and the vaccine strain did not spread horizontally among fish. Two routes of immunization induced high serum antibody titers of OD450nm value were 0.79 and 0.76 and neutralization titers of 320 and 320 for the injection and immersion routes of inoculation, respectively. The expression of immune-related genes increased after immunization and the levels were statistically significant. Challenge of immunized fish with a virulent GCRV-II strain resulted in protection rates of 93.88% and 76.00% for the injection and immersion routes, respectively. The avirulent strain GD1108 revealed good safety and immunogenicity via two different inoculation routes. Although the injection route provided the best immune effect, two pathways provided protection against infection with virulent GCRV-II strains in various degrees. These results indicated that the avirulent strain GD1108 can be used for the development and application as live vaccine.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Enfermedades de los Peces/prevención & control , Genotipo , Reoviridae/genética , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/veterinaria
6.
Mol Cell Probes ; 60: 101776, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34740779

RESUMEN

Tilapia lake virus (TiLV) is a newly emerged pathogen responsible for high mortality and economic losses in the global tilapia industry. Early and accurate diagnosis is an important priority for TiLV disease control. In order to evaluate the methodology in the molecular diagnosis of TiLV, we compared newly developed quantitative real-time PCR (qPCR) and real-time recombinase polymerase amplification (real-time RPA) assays regarding their sensitivities, specificities and detection effect on clinical samples. Real-time RPA amplified the target pathogen in less than 30 min at 39 °C with a detection limit of 620 copies, while qPCR required about 60 min with a detection limit of 62 copies. Both assays were specific for TiLV and there were no cross-reactions observed with other common fish pathogens. The assays were validated using 35 tissue samples from clinically infected and 60 from artificially infected animals. The sensitivities for the real-time RPA and qPCR assays were 93.33 and 100%, respectively, and the specificity was 100% for both. Both methods have their advantages and can play their roles in different situations. The qPCR is more suitable for quantitative analysis and accurate detection of TiLV in a diagnostic laboratory, whereas real-time RPA is more suitable for the diagnosis of clinical diseases and preliminary screening for TiLV infection in poorly equipped laboratories as well as in fish farms.


Asunto(s)
Enfermedades de los Peces , Tilapia , Virus , Animales , Enfermedades de los Peces/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinasas , Sensibilidad y Especificidad
7.
Fish Shellfish Immunol ; 117: 53-61, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34284109

RESUMEN

Vaccination is the most effective way to control the grass carp haemorrhagic disease (GCHD) with the primary pathogen grass carp reovirus genotype II (GCRV-II). However, due to the large difference in breeding conditions and unclear genetic background of grass carp, the results of the experiment were not reliable, which further hinders the effective prevention and control of GCHD. The rare minnow (Gobiocypris rarus) is highly sensitive to GCRV. Its small size, easy feeding, transparent egg membrane, and annual spawning are in line with the necessary conditions for an experimental aquatic animals culture object. In this study, immunogenicity and protective effects of attenuated and inactivated viruses for grass carp and rare minnow were evaluated in parallel. The expression of immune-related genes increased statistically significant after immunization. With the rise of specific serum antibody titers, the results of rare minnow and grass carp were consistent. In addition, there was no significant residue of adjuvant observed in both fish species injected with an adjuvanted and inactivated virus. Challenge of immunized grass carp and rare minnow with the isolate HuNan1307 resulted in protection rates of 95.8% and 92.6% for attenuated virus, 81.4% and 77.7% for inactivated virus, respectively, as well as the viral load changed consistently. The results indicated that rare minnow can be used as a model for evaluation of experimental vaccines against GCHD.


Asunto(s)
Cyprinidae , Modelos Animales de Enfermedad , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/prevención & control , Reoviridae/inmunología , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Cyprinidae/sangre , Cyprinidae/genética , Cyprinidae/inmunología , Cyprinidae/virología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Expresión Génica/efectos de los fármacos , Infecciones por Reoviridae/mortalidad , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Bazo/efectos de los fármacos , Bazo/inmunología
8.
J Fish Dis ; 44(7): 913-921, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33634875

RESUMEN

Koi herpesvirus disease (KHVD) caused by the koi herpesvirus (KHV) is difficult to diagnose in live fish, presenting a challenge to the koi industry. The enzyme-linked immunosorbent assay (ELISA) method cannot be widely used to detect KHV because few commercial anti-KHV antibody exists. Here, we developed an anti-ORF132 polyclonal antibody and confirmed its reactivity via indirect immunofluorescence assay and Western blotting. A double-antibody sandwich ELISA (DAS-ELISA) was established to detect KHV, monoclonal antibody 1B71B4 against ORF92 was used as the capture antibody, and the detection antibody was the polyclonal antibody against the truncated ORF132. The lowest limit was 1.56 ng/ml KHV. Furthermore, the DAS-ELISA reacted with KHV isolates, while no cross-reactions occurred with carp oedema virus, spring viraemia of carp virus, frog virus 3 and grass carp reovirus. Two hundred koi serum samples from Guangdong, China, were used in the DAS-ELISA test, and the positive rate of the koi sera was 13%. The clinical sensitivity and specificity of the DAS-ELISA relative to the traditional PCR method were 66.7% and 97.6%, respectively. Our findings may be useful for diagnosing and preventing KHVD in koi and common carp.


Asunto(s)
Carpas , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Peces/diagnóstico , Infecciones por Herpesviridae/veterinaria , Herpesviridae/aislamiento & purificación , Animales , Anticuerpos , Anticuerpos Antivirales/sangre , Enfermedades de los Peces/virología , Técnica del Anticuerpo Fluorescente Indirecta , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/virología , Hylobatidae , Masculino , Conejos , Sensibilidad y Especificidad
9.
Microb Pathog ; 138: 103810, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31654776

RESUMEN

A brain cell line (CAMB) derived from hybrid snakehead (Channa argus (♂) × Channa maculata (♀)) was established by trypsin and collagenase combined digestion. The culturing conditions and cell biological characteristics were systematically studied. For growth of the cells, M199 medium containing 10% fetal bovine serum was used and at 27 °C incubated. Based on morphological analysis, CAMB cells were confirmed to be epithelial. The cell line has been subcultured more than 80 times since its initial primary culture. Chromosome analysis revealed that CAMB cells had an abnormal chromosome number 2n = 64, whereas the chromosome number in the hybrid snakehead was 45. The suitability of CAMB for tilapia lake virus (TiLV) was demonstrated. A CPE was observed after infection with TiLV-2017A. The highest TiLV titer was observed after 12 days post infection (dpi) and reached 107.2 TCID50/mL. The virus replication was confirmed by electron microscopic observations. Additionally, immunofluorescence assay confirmed the presence of TiLV-2017A after infection of CAMB. Therefore, CAMB cells can be a useful tool for the investigation of the pathogenesis of the TiLV induced disease in tilapia.


Asunto(s)
Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Tilapia/virología , Animales , Biopsia , Encéfalo/virología , Línea Celular , Células Cultivadas , Carga Viral , Replicación Viral
10.
Microb Pathog ; 139: 103859, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31707078

RESUMEN

Grass carp hemorrhagic disease caused by grass carp reovirus (GCRV) is the most important disease for grass carp aquaculture. Its typical clinical symptom is haemorrhaging, although the mechanism was remained unclear. In this study, we investigated the differences in blood parameters and histopathological features between grass carp infected with a virulent and avirulent isolates of genotype II GCRV. Infection with the virulent isolate resulted in increases in 8 routine blood and 2 serum biochemical parameters (P < 0.05); while 9 routine blood and 5 biochemical parameters were significantly decreased (P < 0.05) compared with fish infected with the avirulent isolate. The majority of these alterations were related to hemorrhage, inflammatory reactions and organic damage. The histopathologic changes were primarily vasodilation and hyperaemia in multiple organs, lymphocyte and macrophage infiltration as well as severe vacuolar degeneration in spleen, kidney and liver. The histopathology changes in fish infected with the avirulent isolate were minimal. These results indicated that the pathogenicity of GCRV was primarily reflected in destruction of the blood circulatory system and parenchymatous organs. This study lays the foundation for further research on the pathogenesis of bleeding caused by GCRV infection and the use of blood parameters and histopathology as tools for disease diagnosis.


Asunto(s)
Carpas/virología , Enfermedades de los Peces/sangre , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Infecciones por Reoviridae/patología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Reoviridae/aislamiento & purificación , Animales , Línea Celular , Modelos Animales de Enfermedad , Genotipo , Hemorragia , Riñón/patología , Hígado/patología , Reoviridae/genética , Reoviridae/patogenicidad , Bazo/patología
11.
Fish Shellfish Immunol ; 99: 208-226, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001353

RESUMEN

We investigated differential gene expression in Tilapia infected with the Tilapia Lake virus (TiLV).We used high-throughput sequencing to identify mRNAs and miRNAs involved in TiLV infection progression We identified 25,359 differentially expressed genes that included 863 new genes. We identified 1770, 4142 and 4947 differently expressed genes comparing non-infected controls with 24 and 120 h infections and between the infected groups, respectively. These genes were enriched to 291 GO terms and 62 KEGG pathways and included immune system progress and virion genes. High-throughput miRNA sequencing identified 316 conserved miRNAs, 525 known miRNAs and 592 novel miRNAs. Furthermore, 138, 198 and 153 differently expressed miRNAs were found between the 3 groups listed above, respectively. Target prediction revealed numerous genes including erythropoietin isoform X2, double-stranded RNA-specific adenosine deaminase isoform X1, bone morphogenetic protein 4 and tapasin-related protein that are involved in immune responsiveness. Moreover, these target genes overlapped with differentially expressed mRNAs obtained from RNA-seq. These target genes were significantly enriched to GO terms and KEGG pathways including immune system progress, virion and Wnt signaling pathways. Expression patterns of differentially expressed mRNA and miRNAs were validated in 20 mRNA and 19 miRNAs by qRT-PCR. We also were able to construct a miRNA-mRNA target network that can further understand the molecular mechanisms on the pathogenesis of TiLV and guide future research in developing effective agents and strategies to combat TiLV infections in Tilapia.


Asunto(s)
Regulación de la Expresión Génica/inmunología , MicroARNs/metabolismo , Infecciones por Virus ARN/veterinaria , Virus ARN/clasificación , ARN Mensajero/metabolismo , Tilapia/virología , Animales , MicroARNs/genética , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , ARN Mensajero/genética , Tilapia/genética
12.
Fish Shellfish Immunol ; 98: 810-818, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31743761

RESUMEN

Koi herpesvirus (KHV) also named Cyprinid Herpesvirus 3 (CyHV-3) is one of the most threatening pathogens affecting common carp production as well as the valued ornamental koi carp. The current commercial vaccines available are costly and potentially cause severe stress caused by live virus. KHV ORF149 gene has been proved encoding one of the main immunogenic proteins for KHV. In this study, we coupled a plasmid expression vector for ORF149 to single walled carbon nanotubes (SWCNTs) for an anti-KHV vaccine. The vaccine conferred an 81.9% protection against intraperitoneal challenge with KHV. Importantly, SWCNTs as a promising vehicle can enhanced the protective effects 33.9% over that of the naked DNA vaccine at the same dose. The protection was longer and serum antibody production, enzyme activities and immune-related gene expression were all induced in fish vaccinated with the nanotube-DNA vaccine compared with the DNA alone. Thereby, this study demonstrates that the ORF149 DNA vaccine loaded onto SWCNTs as a novel vaccine might provide an effective method of coping with KHV disease using intra-muscular vaccination.


Asunto(s)
Carpas , Enfermedades de los Peces/prevención & control , Infecciones por Herpesviridae/veterinaria , Herpesviridae/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Nanotubos de Carbono , Animales , Infecciones por Herpesviridae/prevención & control , Inyecciones Intramusculares/veterinaria , Vacunas de ADN/administración & dosificación
13.
J Gen Virol ; 100(4): 642-655, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30230443

RESUMEN

Koi herpesvirus (KHV, Cyprinidherpesvirus 3) causes a fatal disease of koi and common carp. To obtain safe and efficacious live vaccines, we generated deletion mutants of KHV lacking the nonessential genes encoding two enzymes of nucleotide metabolism, thymidine kinase (TK, ORF55) and deoxyuridine-triphosphatase (DUT, ORF123). Since single-deletion mutants based on a KHV isolate from Israel (KHV-I) only exhibited partial attenuation (Fuchs W, Fichtner D, Bergmann SM, Mettenleiter TC. Arch Virol 2011;156 : 1059-1063), a corresponding double mutant was generated and tested in vivo, and shown to be almost avirulent but still protective. To overcome the low in vitro virus titres of KHV-I (≤105 p.f.u. ml-1), single and double TK and DUT deletions were also introduced into a cell culture-adapted KHV strain from Taiwan (KHV-T). The deletions did not affect in vitro virus replication, and all KHV-T mutants exhibited wild-type-like plaque sizes and titres exceeding 107 p.f.u. ml-1, as a prerequisite for economic vaccine production. Compared to wild-type and revertant viruses, the single-deletion mutants of KHV-T were significantly attenuated in vivo, and immersion of juvenile carp in water containing high doses of the double mutant caused almost no fatalities. Nevertheless, the deletion mutants induced similar levels of KHV-specific serum antibodies to the parental wild-type virus, and conferred solid protection against disease after challenge with wild-type KHV. For the convenient differentiation of DNA samples prepared from gill swabs of carp infected with wild-type and TK-deleted KHV we developed a triplex real-time PCR. Thus, KHV-TΔDUT/TK might be suitable as a genetic DIVA vaccine in the field.


Asunto(s)
Herpesviridae/genética , Herpesviridae/inmunología , Pirofosfatasas/genética , Pirofosfatasas/inmunología , Timidina Quinasa/genética , Timidina Quinasa/inmunología , Animales , Carpas/inmunología , Carpas/virología , Células Cultivadas , ADN Viral/genética , ADN Viral/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Israel , Eliminación de Secuencia/genética , Eliminación de Secuencia/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
14.
Microb Pathog ; 136: 103715, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31491550

RESUMEN

The rare minnow, Gobiocypris rarus, is small experimental fish proven to be sensitive to Grass Carp Reovirus (GCRV) infection. In present study we established a new cell (GrE) from eggs of G. rarus. GrE cells grew well at 28 °C in M199 medium containing 10% fetal bovine serum, and has been subcultured for over 70 passages. Chromosome analysis indicated that 40% of the cells were diploid 2n = 66 while the chromosome number of the fish is 2n = 50. Viral replication in GrE cells was confirmed by transmission electron microscopy, immunofluorescence assays and virus titration experiments. GrE cells and Cyenopharyngodon idellus kidney cells were infected with two GCRV genotypes while the virus copies of GCRV II in GrE peaked at 2.25 × 105 on 12th dpi. In vivo challenge experiments using GCRV I and II isolates at generations 1 and 20 indicated that GCRV II reproduce similar symptoms and histopathological changes of the disease in the rare minnow. These results indicated that GrE is permissive for GCRV genotype II propagation and can be used for pathogenesis studies and vaccine development of the predominant genotype of GCRV.


Asunto(s)
Línea Celular , Cyprinidae , Orthoreovirus de los Mamíferos/crecimiento & desarrollo , Cultivo de Virus/métodos , Animales , Medios de Cultivo/química , Diploidia , Enfermedades de los Peces/virología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología
15.
Microb Pathog ; 128: 36-40, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30576715

RESUMEN

Infections with koi herpesvirus (KHV) in carp are still a severe problem worldwide. Detection and elimination of infected fish are necessary for control of the Koi herpesvirus disease (KHVD). Serum is an excellent specimen for KHV testing because of high survivability of KHV in serum and ease of collection, storage, and handling. The direct detection of fish viruses based on the sandwich ELISA has emerged as a practical and reliable means of diagnosis. Thus, it is important to create monoclonal antibodies (MAbs) against purified KHV. By using hybridoma-monoclonal antibody technology, two hybridoma cell lines secreting MAbs against the KHV were established. By Western blot and IFAT analysis, the secreted MAbs from cell line IB7IB4 and cell line 7C72F7 recognized proteins of KHV. The result demonstrated that the MAbs were highly specific and sensitive to the KHV, and can be used for monitoring the virus quantification of carp, for example, the direct KHV diagnosis by sandwich enzyme-linked immunosorbent assay(ELISA). An antigen sandwich ELISA applying the biotin-avidin system was established using the biotinylated MAb IB7IB4 and 7C72F7 to detect virus in koi sera. These MAbs did not react with any of the tested other viruses by ELISA except KHV. The detection limit of the test was 3.923ng/ml KHV. Thus, this antigen sandwich ELISA is suitable for recognition of KHV.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Virales/aislamiento & purificación , Carpas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/veterinaria , Herpesviridae/aislamiento & purificación , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/aislamiento & purificación , Especificidad de Anticuerpos , Antígenos Virales/sangre , Western Blotting , Carpas/virología , Línea Celular , ADN Viral , Modelos Animales de Enfermedad , Enfermedades de los Peces/sangre , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Herpesviridae/efectos de los fármacos , Herpesviridae/inmunología , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/virología , Hibridomas , Ratones Endogámicos BALB C , Sensibilidad y Especificidad , Virión/aislamiento & purificación
16.
Fish Shellfish Immunol ; 87: 809-819, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30776543

RESUMEN

Carp from breeding strains with different genetic background present diverse levels of resistance to viral pathogens. Carp strains of Asian origin, currently being treated as Cyprinus rubrofuscus L., especially Amur wild carp (AS), were proven to be more resistant to koi herpesvirus disease (KHVD; caused by cyprinid herpesvirus 3, CyHV-3) than strains originating from Europe and belonging to Cyprinus carpio L., like the Prerov scale carp (PS) or koi carp from a breed in the Czech Republic. We hypothesised that it can be associated with a higher magnitude of type I interferon (IFN) response as a first line of innate defence mechanisms against viral infections. To evaluate this hypothesis, four strains of common carp (AS, Rop, PS and koi) were challenged using two viral infection models: Rhabdovirus SVCV (spring viremia of carp virus) and alloherpesvirus CyHV-3. The infection with SVCV induced a low mortality rates and the most resistant was the Rop strain (no mortalities), whereas the PS strain was the most susceptible (survival rate of 78%). During CyHV-3 infection, Rop and AS strains performed better (survival rates of 78% and 53%, respectively) than PS and koi strains (survival rates of 35% and 10%, respectively). The evaluation of virus loads and virus replication showed significant differences between the carp strains, which correlated with the mortality rate. The evaluation of type I IFN responses showed that there were fundamental differences between the virus infection models. While responses to the SVCV were high, the CyHV-3 generally induced low responses. Furthermore, the results demonstrated that the magnitude of type I IFN responses did not correlate with a higher resistance in infected carp. In the case of a CyHV-3 infection, reduced type I IFN responses could be related to the potential ability of the virus to interfere with cellular sensing of foreign nucleic acids. Taken together, the results broaden our understanding of how common carp from different genetic strains interact with various viral pathogens.


Asunto(s)
Carpas/genética , Carpas/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de los Peces/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Herpesviridae/fisiología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria
17.
J Fish Dis ; 42(2): 181-187, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30537062

RESUMEN

The production of piscine viruses, in particular of koi herpesvirus (KHV, CyHV-3) and infectious salmon anaemia virus (ISAV), is still challenging due to the limited susceptibility of available cell lines to these viruses. A number of cell lines from different fish species were compared to standard diagnostic cell lines for KHV and ISAV regarding their capability to exhibit a cytopathic effect (CPE) and to accumulate virus. Two cell lines, so far undescribed, appeared to be useful for diagnostic purposes. Fr994, a cell line derived from ovaries of rainbow trout (Oncorhynchus mykiss), produced constantly high ISA virus (ISAV) titres and developed a pronounced CPE even at high cell passage numbers, while standard cell lines are reported to gradually loose these properties upon propagation. Another cell line isolated from the head kidney of common carp (Cyprinus carpio), KoK, showed a KHV induced CPE earlier than the standard cell line used for diagnostics. A third cell line, named Fin-4, established from the fin epithelium of rainbow trout did not promote efficient replication of tested viruses, but showed antigen sampling properties and might be useful as an in vitro model for virus uptake or phagocytosis.


Asunto(s)
Línea Celular/citología , Enfermedades de los Peces/virología , Herpesviridae/fisiología , Isavirus/fisiología , Replicación Viral , Aletas de Animales/citología , Aletas de Animales/virología , Animales , Carpas/virología , Línea Celular/virología , Femenino , Riñón Cefálico/citología , Riñón Cefálico/virología , Oncorhynchus mykiss/virología , Ovario/citología , Ovario/virología
18.
J Fish Dis ; 42(6): 817-824, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30920677

RESUMEN

Recently, substantial mortality of farmed and wild tilapia caused by tilapia lake virus (TiLV) infection has been observed worldwide. However, sensitive and reliable diagnostic method is limited. A reverse transcription-loopmediated isothermal amplification (RT-LAMP) assay has been applied for the detection of TiLV nucleotide sequence. Six primers targeting two locations on the target gene based on a highly conserved sequence in the segment 1 (S1) region of the TiLV genome have been designed. The optimized RT-LAMP reaction was maintained at the isothermal condition of 63°C for 45 min. And the amplifications could be verified by turbidity or a colour change with the addition of SYBR Green I. Subsequently, RT-LAMP products could be observed by a ladder pattern following gel electrophoresis. The species-specific assay showed that the method was sensitive enough to detect as low as 1.6 copies of viral particle, and the assay was highly specific because no cross-reactivity was observed with other pathogens, and had a diagnostic sensitivity and specificity of 100% when TiLV-positive samples and non-target virus were tested. In summary, all the results demonstrate that this RT-LAMP is a rapid, effective and sensitive method for TiLV detection in tilapia aquaculture.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Virus ADN/aislamiento & purificación , Enfermedades de los Peces/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Tilapia/virología , Animales , Acuicultura , Cartilla de ADN/genética , Infecciones por Virus ADN/diagnóstico , Enfermedades de los Peces/virología , Lagos/virología , ARN Viral/genética , Transcripción Reversa , Sensibilidad y Especificidad , Temperatura
19.
Microb Pathog ; 114: 68-74, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29180293

RESUMEN

Grass carp reovirus (GCRV) caused severe hemorrhagic disease with significant losses of fingerling and yearling grass carp, Cyenopharyngodon idellus, in southeast Asian. It was first isolated in 1983 in China, and clade analysis of the different GCRV isolates indicates there are at least three different genotypes I, II, and III. In recent years, GCRV genotype II has been determined as a dominant virus type which cause severe obvious clinical signs in fish but no cytopathic effect onto presently available cell culture. TCID50 is one of standard method to quantity infectious virus particles. In the present study, an indirect immunofluorescence assay (IFA) was developed using antibody against a protein encoded by segment 10 of GCRV genotype II. Moreover, the specific assay to differentitate GCRV of different genotypes and a sensitive assay for determination of GCRV genotype II were developed respectively. The results showed the IFA only can recognize genotype II virus at the lowest initial concentration of 550 genomic copies/ml. Furthermore, comparison of results obtained from qPCR and the TCID50 assay combined IFA was conducted. The results indicated that TCID50 of GCRV isolates JX0901 and HZ08 differs with 2 log steps reduction in the numbers of viruses compared with the number of genome copies detected by qPCR. The immunofluorescence assay developed is sensitive, specific, and the TCID50 combined with IFA will be a standardizable technique for the quantitation and detection of infectious GCRV in cell culture without cytolysis.


Asunto(s)
Carpas/virología , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria , Genotipo , Infecciones por Reoviridae/diagnóstico , Reoviridae/genética , Reoviridae/aislamiento & purificación , Animales , Anticuerpos Antivirales , Técnicas de Cultivo de Célula , Línea Celular , China , Efecto Citopatogénico Viral , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/virología , Genes Virales/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Sensibilidad y Especificidad
20.
BMC Vet Res ; 14(1): 178, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879957

RESUMEN

BACKGROUND: Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT: One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS: In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.


Asunto(s)
Acuicultura , Enfermedades Transmisibles/veterinaria , Enfermedades de los Peces/diagnóstico , Peces , Animales , Enfermedades Transmisibles/diagnóstico , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA