Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Lancet Microbe ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38908389

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a major public health threat, affecting not only people but also animals and the environment. The One Health dimension of AMR is well known; however, data are lacking on the circulation of resistance-conferring genes, particularly in low-income countries. In 2017, WHO proposed a protocol called Tricycle, focusing on extended-spectrum ß-lactamase (ESBL)-Escherichia coli surveillance in the three sectors (humans, animals, and the environment). We implemented Tricycle in Madagascar to assess ESBL-E coli prevalence and describe intrasector and intersector circulation of ESBL-E coli and plasmids. METHODS: In this prospective study, we collected blood culture data from hospitalised patients with a suspected bloodstream infection processed from May 1, 2018, to April 30, 2019, and rectal swabs from healthy pregnant women from July 30, 2018, to April 27, 2019, both from three hospitals in Antananarivo, Madagascar; and caeca from farm chickens and surface waters from the Ikopa river, wastewater, and slaughterhouse effluents in the Antananarivo area, Madagascar, from April 9, 2018, to April 30, 2019. All samples were tested for ESBL-E coli. The genomes of all isolates were sequenced using a short-read method on NextSeq 500 and NovaSeq 6000 platforms (Illumina, San Diego, CA, USA) and those carrying plasmid replicons using an additional long-read method on a MinION platform (Oxford Nanopore Technologies, Oxford, UK). We characterised genomes of isolated strains (sequence type, resistance and virulence gene content, and plasmid replicons). We then compared isolates using the variant calling method (single-nucleotide polymorphism). FINDINGS: Data from 1056 blood cultures were collected and 289 pregnant women, 246 chickens, and 28 surface waters were sampled. Of the blood cultures, 18 contained E coli, of which seven (39%) were ESBL. ESBL-E coli was present in samples from 86 (30%) of 289 pregnant women, 140 (57%) of 246 chickens, and 28 (100%) of 28 surface water samples. The wet season (November to April) was associated with higher rates of carriage in humans (odds ratio 3·08 [1·81-5·27]) and chickens (2·79 [1·65-4·81]). Sequencing of 277 non-duplicated isolates (82 from pregnant women, 118 from chickens, and 77 from environmental samples) showed high genetic diversity (90 sequence types identified) with sector-specific genomic features. Single nucleotide polymorphism (SNP) analysis revealed that 169 (61%) of 277 isolates grouped into 44 clusters (two or more isolates) of closely related isolates (<40 SNPs), of which 24 clusters contained isolates from two sectors and five contained isolates from all three sectors. ESBL genes were all blaCTX-M variants (215 [78%] of 277 being blaCTX-M-15) and were located on a plasmid in 113 (41%) of 277 isolates. These ESBL-carrying plasmids were mainly IncF (63 [55%] of 114; one strain carried two plasmids) and IncY (42 [37%] of 114). The F31/36:A4:B1 (n=13) and F-:A-:B53 (n=8) pMLST subtypes, and the IncY plasmids, which were all highly conserved, were observed in isolates of differing genetic backgrounds from all sectors and were transferable in vitro by conjugation. INTERPRETATION: Despite sector-specific population structures, both ESBL-E coli strains and plasmids are circulating among humans, chickens, and the environment in Antananarivo, Madagascar. The Tricycle protocol can be implemented in a low-income country and represents a powerful tool for investigating dissemination of AMR from a One Health perspective. FUNDING: Fondation Mérieux and INSERM, Université Paris Cité.

2.
Microbiol Spectr ; 10(1): e0080821, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044221

RESUMEN

Staphylococcus aureus (SA) is a major human pathogen producing virulence factors, such as Panton-Valentine-leucocidin (PVL), alpha-hemolysin (Hla), and phenol-soluble-modulins alpha (PSMα), including delta-hemolysin (Hld). Unlike oxacillin, clindamycin and linezolid subinhibitory concentrations (sub-MIC) display an anti-toxin effect on PVL and Hla expression. Few studies have investigated PSMα and Hld expression modulation by antibiotics. Herein, we assessed the effect of antibiotic sub-MIC on PSMα1 and Hld expression for 4 community-acquired methicillin-resistant SA (CA-MRSA), 2 strains belonging to USASA300 and 2 strains belonging to ST80 European clone. SA were grown under oxacillin, clindamycin, linezolid, or tigecycline. After incubation, culture pellets were used for the determination of psmα1, pmtB, pmtR mRNA, and RNAIII levels by relative quantitative RT-PCR. PSMα1 and Hld expressions were measured in supernatant using high-performance-liquid-chromatography coupled to mass-spectrometry (HPLC-MS). Oxacillin sub-MIC reduced PSMα1 and Hld production, partially related to mRNA variations. For other antibiotics, effects on toxin expression were strain or clone dependent. Antibiotic effect on mRNA did not always reflect protein expression modulation. Variations of pmtB, pmtR mRNA, and RNAIII levels were insufficient to explain toxin expression modulation. Altogether, these data indicate that PSMα and Hld expressions are modulated by antibiotics (potential anti-toxin effect of oxacillin) differently compared to PVL and Hla. IMPORTANCE Staphylococcal toxins play an important role in the physiopathology of staphylococcal infections. Subinhibitory concentrations (sub-MIC) of antibiotics modulate in vitro toxins expression in S. aureus: clindamycin (CLI) and linezolid (LIN) display an anti-toxin effect on Panton-Valentine leucocidin and alpha-hemolysin production, while oxacillin (OXA) has an inducing effect. Few studies have focused on the modulation of phenol-soluble modulins alpha (PSMα) including delta-hemolysin expression by sub-MIC antibiotics. The aim of the present study was to investigate the effects of sub-MIC antibiotics on the expression of PSMα toxins for 4 community-acquired methicillin-resistant S. aureus (CA-MRSA) clinical isolates. The data presented herein confirm that OXA sub-MICs constantly inhibit PSMα production for CA-MRSA. Certain strains of S. aureus are highly sensitive to sub-MICs of protein synthesis inhibitory agents, resulting in an important increase of mRNA levels to overcome the intrinsic ribosome blockage ability of these antibiotics, eventually translating in increased expression of toxins.


Asunto(s)
Antibacterianos/farmacología , Clindamicina/farmacología , Linezolid/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Oxacilina/farmacología , Infecciones Estafilocócicas/microbiología , Tigeciclina/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA