Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(7): 2545-2550, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30683716

RESUMEN

The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein-protein interactions. We have refined crystallization conditions for KRAS169Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein-protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein-protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein-protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Cristalografía por Rayos X , Desarrollo de Medicamentos , Estructura Molecular , Proteína Oncogénica p21(ras)/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
2.
Anal Chem ; 93(15): 6104-6111, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33825439

RESUMEN

As key regulators of the actin cytoskeleton, RHO GTPase expression and/or activity are deregulated in tumorigenesis and metastatic progression. Nevertheless, the vast majority of experiments supporting this conclusion was conducted on cell lines but not on human tumor samples that were mostly studied at the expression level only. Up to now, the activity of RHO proteins remains poorly investigated in human tumors. In this article, we present the development of a robust nanobody-based ELISA assay, with a high selectivity that allows an accurate quantification of RHO protein GTP-bound state in the nanomolar range (1 nM; 20 µg/L), not only in cell lines after treatment but also in tumor samples. Of note, we present here a fine analysis of RHOA-like and RAC1 active state in tumor samples with the most comprehensive study of RHOA-GTP and RHOC-GTP levels performed on human breast tumor samples. We revealed increased GTP-bound RHOA and RHOC protein activities in tumors compared to normal tissue counterparts, and demonstrated that the RHO active state and RHO expression are two independent parameters among different breast cancer subtypes. Our results further highlight the regulation of RHO protein activation in tumor samples and the relevance of directly studying RHO GTPase activities involvement in molecular pathways.


Asunto(s)
Neoplasias de la Mama , Proteína de Unión al GTP rhoA , Proteína rhoC de Unión a GTP , Transformación Celular Neoplásica , Femenino , Guanosina Trifosfato , Humanos , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP/metabolismo
3.
Biochem Soc Trans ; 49(5): 2021-2035, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623375

RESUMEN

The RAS superfamily of small GTPases regulates major physiological cellular processes. Mutation or deregulation of these small GTPases, their regulators and/or their effectors are associated with many diseases including cancer. Hence, targeting these classes of proteins is an important therapeutic strategy in cancer. This has been recently achieved with the approval of the first KRASG12C covalent inhibitors for the clinic. However, many other mutants and small GTPases are still considered as 'undruggable' with small molecule inhibitors because of a lack of well-defined pocket(s) at their surface. Therefore, alternative therapeutic strategies have been developed to target these proteins. In this review, we discuss the use of intracellular antibodies and derivatives - reagents that bind their antigen inside the cells - for the discovery of novel inhibitory mechanisms, targetable features and therapeutic strategies to inhibit small GTPases and their downstream pathways. These reagents are also versatile tools used to better understand the biological mechanisms regulated by small GTPases and to accelerate the drug discovery process.


Asunto(s)
Anticuerpos/metabolismo , Proteínas de Repetición de Anquirina Diseñadas/metabolismo , Descubrimiento de Drogas/métodos , Proteínas de Unión al GTP Monoméricas/metabolismo , Neoplasias/enzimología , Transducción de Señal/efectos de los fármacos , Anticuerpos de Dominio Único/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Proteínas de Repetición de Anquirina Diseñadas/farmacología , Humanos , Terapia Molecular Dirigida/métodos , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Proteínas de Unión al GTP Monoméricas/inmunología , Neoplasias/tratamiento farmacológico , Unión Proteica , Proteolisis/efectos de los fármacos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología
4.
J Cell Sci ; 129(13): 2673-83, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27206857

RESUMEN

Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A-H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Nucleosomas/genética , Animales , Camélidos del Nuevo Mundo , Cromatina/aislamiento & purificación , Histonas/metabolismo , Ubiquitinación/genética
5.
iScience ; 27(5): 109802, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38746666

RESUMEN

Targeted protein degradation (TPD) strategy harnesses the ubiquitin-proteasome system (UPS) to degrade a protein of interest (POI) by bringing it into proximity with an E3 ubiquitin ligase. However, the limited availability of functional E3 ligases and the emergence of resistance through mutations in UPS components restrict this approach. Therefore, identifying alternative E3 ligases suitable for TPD is important to develop new degraders and overcome potential resistance mechanisms. Here, we use a protein-based degrader method, by fusing an anti-tag intracellular antibody to an E3 ligase, to screen E3 ligases enabling the degradation of a tagged POI. We identify SOCS7 E3 ligase as effective biodegrader, able to deplete its target in various cell lines regardless of the POI's subcellular localization. We show its utility by generating a SOCS7-based KRAS degrader that inhibits mutant KRAS pancreatic cancer cells' proliferation. These findings highlight SOCS7 versatility as valuable E3 ligase for generating potent degraders.

6.
Cell Rep ; 43(5): 114214, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761375

RESUMEN

TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación , Enfermedades Neurodegenerativas , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mutación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Transcripción Genética , Estructuras R-Loop , Sistemas CRISPR-Cas/genética
7.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294491

RESUMEN

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Asunto(s)
Adenocarcinoma , Citidina Desaminasa , Inhibidores de la Síntesis del Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Citidina Desaminasa/metabolismo , ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Replicación del ADN , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico
8.
Nat Commun ; 15(1): 5345, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937474

RESUMEN

Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Farnesiltransferasa , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Ratones , Dependencia del Oncogén/genética , Terapia Molecular Dirigida , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Oncogenes/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quinolonas
9.
Bio Protoc ; 12(4): e4324, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35340285

RESUMEN

Targeting hard-to-drug proteins, such as proteins functioning by protein-protein interactions (PPIs) with small molecules, is difficult because of the lack of well-defined pockets. Fragment or computational-based methods are usually employed for the discovery of such compounds, but no generic method is available to quickly identify small molecules interfering with PPIs. Here, we provide a protocol describing a generic method to discover small molecules inhibiting the interaction between an intracellular antibody and its target, in particular for proteins that are hard to make in recombinant form. This protocol reports a versatile and generic method that can be applied to any target/intracellular antibody. Because it is a cell-based assay, it identifies chemical matters that are already displaying advantageous cell permeability properties. Graphic abstract: Cell-based intracellular antibody-guided small molecule screening.

10.
Antibodies (Basel) ; 11(3)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35892707

RESUMEN

Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.

11.
Nat Commun ; 13(1): 2961, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618715

RESUMEN

RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.


Asunto(s)
Estructuras R-Loop , Ribonucleasas , Enfermedades Autoinmunes del Sistema Nervioso , ADN/química , Roturas del ADN , Endorribonucleasas/metabolismo , Humanos , Inflamación/genética , Malformaciones del Sistema Nervioso , Estructuras R-Loop/genética , ARN/química , Ribonucleasa H/metabolismo , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/metabolismo
12.
Front Immunol ; 13: 980539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059552

RESUMEN

Strategies based on intracellular expression of artificial binding domains present several advantages over manipulating nucleic acid expression or the use of small molecule inhibitors. Intracellularly-functional nanobodies can be considered as promising macrodrugs to study key signaling pathways by interfering with protein-protein interactions. With the aim of studying the RAS-related small GTPase RHOA family, we previously isolated, from a synthetic phage display library, nanobodies selective towards the GTP-bound conformation of RHOA subfamily proteins that lack selectivity between the highly conserved RHOA-like and RAC subfamilies of GTPases. To identify RHOA/ROCK pathway inhibitory intracellular nanobodies, we implemented a stringent, subtractive phage display selection towards RHOA-GTP followed by a phenotypic screen based on F-actin fiber loss. Intracellular interaction and intracellular selectivity between RHOA and RAC1 proteins was demonstrated by adapting the sensitive intracellular protein-protein interaction reporter based on the tripartite split-GFP method. This strategy led us to identify a functional intracellular nanobody, hereafter named RH28, that does not cross-react with the close RAC subfamily and blocks/disrupts the RHOA/ROCK signaling pathway in several cell lines without further engineering or functionalization. We confirmed these results by showing, using SPR assays, the high specificity of the RH28 nanobody towards the GTP-bound conformation of RHOA subfamily GTPases. In the metastatic melanoma cell line WM266-4, RH28 expression triggered an elongated cellular phenotype associated with a loss of cellular contraction properties, demonstrating the efficient intracellular blocking of RHOA/B/C proteins downstream interactions without the need of manipulating endogenous gene expression. This work paves the way for future therapeutic strategies based on protein-protein interaction disruption with intracellular antibodies.


Asunto(s)
Anticuerpos de Dominio Único , Actinas/metabolismo , Guanosina Trifosfato , Transducción de Señal , Anticuerpos de Dominio Único/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo
13.
STAR Protoc ; 2(1): 100249, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33437969

RESUMEN

Here, we provide a protocol for the selection of conformation-specific intracellular antibody degraders using a cell-based screening method. We applied this protocol to select antibody-based degraders targeting the active form of the small GTPase RHOB (i.e., RHOB-GTP) using an engineered H2882 cell line. The protocol can be used to study the function of RHOB active conformation in various cellular settings. This protocol can be broadly applied to select any kind of intracellular antibody degraders, regardless of conformational state. For complete details on the use and execution of this protocol, please refer to Bery et al. (2019).


Asunto(s)
Ingeniería Celular , Proteolisis , Anticuerpos de Cadena Única/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Línea Celular , Humanos , Conformación Proteica , Anticuerpos de Cadena Única/genética , Proteína de Unión al GTP rhoB/genética
14.
J Immunol Methods ; 494: 113051, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33794223

RESUMEN

The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , Fragmentos de Inmunoglobulinas/metabolismo , Proteínas con Dominio LIM/metabolismo , Leucemia de Células T/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Linfocitos T/metabolismo , Anticuerpos/metabolismo , Unión Competitiva , Células Cultivadas , Descubrimiento de Drogas , Humanos , Fragmentos de Inmunoglobulinas/genética , Espacio Intracelular , Conformación Proteica , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Linfocitos T/inmunología
15.
Sci Adv ; 7(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837087

RESUMEN

Intracellular antibodies are tools that can be used directly for target validation by interfering with properties like protein-protein interactions. An alternative use of intracellular antibodies in drug discovery is developing small-molecule surrogates using antibody-derived (Abd) technology. We previously used this strategy with an in vitro competitive surface plasmon resonance method that relied on high-affinity antibody fragments to obtain RAS-binding compounds. We now describe a novel implementation of the Abd method with a cell-based intracellular antibody-guided screening method that we have applied to the chromosomal translocation protein LMO2. We have identified a chemical series of anti-LMO2 Abd compounds that bind at the same LMO2 location as the inhibitory anti-LMO2 intracellular antibody combining site. Intracellular antibodies could therefore be used in cell-based screens to identify chemical surrogates of their binding sites and potentially be applied to any challenging proteins, such as transcription factors that have been considered undruggable.


Asunto(s)
Anticuerpos , Translocación Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Sitios de Unión de Anticuerpos , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/genética
16.
Nat Commun ; 11(1): 3233, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591521

RESUMEN

Tumour-associated KRAS mutations are the most prevalent in the three RAS-family isoforms and involve many different amino-acids. Therefore, molecules able to interfere with mutant KRAS protein are potentially important for wide-ranging tumour therapy. We describe the engineering of two RAS degraders based on protein macromolecules (macrodrugs) fused to specific E3 ligases. A KRAS-specific DARPin fused to the VHL E3 ligase is compared to a pan-RAS intracellular single domain antibody (iDAb) fused to the UBOX domain of the CHIP E3 ligase. We demonstrate that while the KRAS-specific DARPin degrader induces specific proteolysis of both mutant and wild type KRAS, it only inhibits proliferation of cancer cells expressing mutant KRAS in vitro and in vivo. Pan-RAS protein degradation, however, affects proliferation irrespective of the RAS mutation. These data show that specific KRAS degradation is an important therapeutic strategy to affect tumours expressing any of the range of KRAS mutations.


Asunto(s)
Sustancias Macromoleculares/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Neoplasias/metabolismo , Proteolisis , Proteínas ras/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones Desnudos , Dominios Proteicos , Ingeniería de Proteínas , Transducción de Señal
17.
Curr Protoc Cell Biol ; 83(1): e83, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30768855

RESUMEN

Protein-protein interactions (PPIs) are principle biological processes that control normal cell growth, differentiation, and homeostasis but are also crucial in diseases such as malignancy, neuropathy, and infection. Despite the importance of PPIs in biology, this target class has been very challenging to convert to therapeutics. In the last decade, much progress has been made in the inhibition of PPIs involved in diseases, but many remain difficult such as RAS-effector interactions in cancers. We describe here a protocol for using Bioluminescence Resonance Energy Transfer 2 (BRET2)-based RAS biosensors to detect and characterize RAS PPI inhibition by macromolecules and small molecules. This method could be extended to any other small GTPases or any other PPIs of interest. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Transferencia de Energía , Mediciones Luminiscentes/métodos , Proteínas ras/análisis , Técnicas Biosensibles , Células HEK293 , Humanos , Immunoblotting , Ingeniería de Proteínas
18.
Antibodies (Basel) ; 8(1)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31544814

RESUMEN

RHO (Ras HOmologous) GTPases are molecular switches that activate, in their state bound to Guanosine triphosphate (GTP), key signaling pathways, which involve actin cytoskeleton dynamics. Previously, we selected the nanobody RH12, from a synthetic phage display library, which binds the GTP-bound active conformation of RHOA (Ras Homologous family member A). However, when expressed as an intracellular antibody, its blocking effect on RHO signaling led to a loss of actin fibers, which in turn affected cell shape and cell survival. Here, in order to engineer an intracellular biosensor of RHOA-GTP activation, we screened the same phage nanobody library and identified another RHO-GTP selective intracellular nanobody, but with no apparent toxicity. The recombinant RH57 nanobody displays high affinity towards GTP-bound RHOA/B/C subgroup of small GTPases in vitro. Intracellular expression of the RH57 allowed selective co-precipitation with the GTP-bound state of the endogenous RHOA subfamily. When expressed as a fluorescent fusion protein, the chromobody GFP-RH57 was localized to the inner plasma membrane upon stimulation of the activation of endogenous RHO. Finally, the RH57 nanobody was used to establish a BRET-based biosensor (Bioluminescence Resonance Energy Transfer) of RHO activation. The dynamic range of the BRET signal could potentially offer new opportunities to develop cell-based screening of RHOA subfamily activation modulators.

19.
Cell Chem Biol ; 26(11): 1544-1558.e6, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31522999

RESUMEN

The selective downregulation of activated intracellular proteins is a key challenge in cell biology. RHO small GTPases switch between a guanosine diphosphate (GDP)-bound and a guanosine triphosphate (GTP)-bound state that drives downstream signaling. At present, no tool is available to study endogenous RHO-GTPinduced conformational changes in live cells. Here, we established a cell-based screen to selectively degrade RHOB-GTP using F-box-intracellular single-domain antibody fusion. We identified one intracellular antibody (intrabody) that shows selective targeting of endogenous RHOB-GTP mediated by interactions between the CDR3 loop of the domain antibody and the GTP-binding pocket of RHOB. Our results suggest that, while RHOB is highly regulated at the expression level, only the GTP-bound pool, but not its global expression, mediates RHOB functions in genomic instability and in cell invasion. The F-box/intrabody-targeted protein degradation represents a unique approach to knock down the active form of small GTPases or other proteins with multiple cellular activities.


Asunto(s)
Anticuerpos de Dominio Único/metabolismo , Proteína de Unión al GTP rhoB/metabolismo , Sitios de Unión , Movimiento Celular/efectos de los fármacos , Cristalografía por Rayos X , Doxiciclina/farmacología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Expresión Génica/efectos de los fármacos , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Mutagénesis , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Proteína de Unión al GTP rhoB/antagonistas & inhibidores , Proteína de Unión al GTP rhoB/genética
20.
Sci Rep ; 9(1): 5760, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962539

RESUMEN

The surfaceome is critical because surface proteins provide a gateway for internal signals and transfer of molecules into cells, and surfaceome differences can influence therapy response. We have used a surfaceome analysis method, based on comparing RNA-seq data between normal and abnormal cells (Surfaceome DataBase Mining or Surfaceome DBM), to identify sets of upregulated cell surface protein mRNAs in an LMO2-mediated T-ALL mouse model and corroborated by protein detection using antibodies. In this model the leukemia initiating cells (LICs) comprise pre-leukaemic, differentiation inhibited thymocytes allowing us to provide a profile of the LIC surfaceome in which GPR56, CD53 and CD59a are co-expressed with CD25. Implementation of cell surface interaction assays demonstrates fluid interaction of surface proteins and CD25 is only internalized when co-localized with other proteins. The Surfaceome DBM approach to analyse cancer cell surfaceomes is a way to find targetable surface biomarkers for clinical conditions where RNA-seq data from normal and abnormal cell are available.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas con Dominio LIM/metabolismo , Leucemia Linfoide/genética , Proteínas Proto-Oncogénicas/metabolismo , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Biomarcadores de Tumor/genética , Antígenos CD59/genética , Antígenos CD59/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Proteínas con Dominio LIM/genética , Leucemia Linfoide/metabolismo , Leucemia Linfoide/patología , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas/genética , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tetraspanina 25/genética , Tetraspanina 25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA