Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272231

RESUMEN

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Asunto(s)
Hexoquinasa , Factor 1 de Elongación Peptídica , Animales , Cricetinae , Humanos , Adenosina Trifosfato , Línea Celular , Cricetulus , Hexoquinasa/genética , Hexoquinasa/metabolismo , Lípidos , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , Glucólisis , Oxidación-Reducción , Movimiento Celular , Proliferación Celular , Metabolismo de los Lípidos
2.
Am J Physiol Cell Physiol ; 322(5): C833-C848, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319901

RESUMEN

Treatment of mouse preimplantation embryos with elevated palmitic acid (PA) reduces blastocyst development, whereas cotreatment with PA and oleic acid (OA) together rescues blastocyst development to control frequencies. To understand the mechanistic effects of PA and OA treatment on early mouse embryos, we investigated the effects of PA and OA, alone and in combination, on autophagy during preimplantation development in vitro. We hypothesized that PA would alter autophagic processes and that OA cotreatment would restore control levels of autophagy. Two-cell stage mouse embryos were placed into culture medium supplemented with 100 µM PA, 250 µM OA, 100 µM PA and 250 µM OA, or potassium simplex optimization media with amino acid (KSOMaa) medium alone (control) for 18-48 h. The results demonstrated that OA cotreatment slowed developmental progression after 30 h of cotreatment but restored control blastocyst frequencies by 48 h. PA treatment elevated light chain 3 (LC3)-II puncta and p62 levels per cell whereas OA cotreatment returned to control levels of autophagy by 48 h. Autophagic mechanisms are altered by nonesterified fatty acid (NEFA) treatments during mouse preimplantation development in vitro, where PA elevates autophagosome formation and reduces autophagosome degradation levels, whereas cotreatment with OA reversed these PA effects. Autophagosome-lysosome colocalization only differed between PA and OA alone treatment groups. These findings advance our understanding of the effects of free fatty acid exposure on preimplantation development, and they uncover principles that may underlie the associations between elevated fatty acid levels and overall declines in reproductive fertility.


Asunto(s)
Ácido Oléico , Ácido Palmítico , Animales , Autofagia , Blastocisto/metabolismo , Medios de Cultivo/metabolismo , Ácidos Grasos no Esterificados , Ratones , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Ácido Palmítico/farmacología
3.
J Biol Chem ; 296: 100478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647315

RESUMEN

Melanoma is the most aggressive skin malignancy with increasing incidence worldwide. Pannexin1 (PANX1), a member of the pannexin family of channel-forming glycoproteins, regulates cellular processes in melanoma cells including proliferation, migration, and invasion/metastasis. However, the mechanisms responsible for coordinating and regulating PANX1 function remain unclear. Here, we demonstrated a direct interaction between the C-terminal region of PANX1 and the N-terminal portion of ß-catenin, a key transcription factor in the Wnt pathway. At the protein level, ß-catenin was significantly decreased when PANX1 was either knocked down or inhibited by two PANX1 blockers, Probenecid and Spironolactone. Immunofluorescence imaging showed a disrupted pattern of ß-catenin localization at the cell membrane in PANX1-deficient cells, and transcription of several Wnt target genes, including MITF, was suppressed. In addition, a mitochondrial stress test revealed that the metabolism of PANX1-deficient cells was impaired, indicating a role for PANX1 in the regulation of the melanoma cell metabolic profile. Taken together, our data show that PANX1 directly interacts with ß-catenin to modulate growth and metabolism in melanoma cells. These findings provide mechanistic insight into PANX1-mediated melanoma progression and may be applicable to other contexts where PANX1 and ß-catenin interact as a potential new component of the Wnt signaling pathway.


Asunto(s)
Conexinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , beta Catenina/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Conexinas/genética , Conexinas/fisiología , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/fisiología
4.
Reproduction ; 163(3): 133-143, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35038315

RESUMEN

As obese and overweight patients commonly display hyperlipidemia and are increasingly accessing fertility clinics for their conception needs, our studies are directed at understanding the effects of hyperlipidemia on early pregnancy. We have focused on investigating palmitic acid (PA) and oleic acid (OA) treatment alone and in combination from the mouse two-cell stage embryos as a model for understanding their effects on the mammalian preimplantation embryo. We recently reported that PA exerts a negative effect on mouse two-cell progression to the blastocyst stage, whereas OA co-treatment reverses that negative effect. In the present study, we hypothesized that PA treatment of mouse embryos would disrupt proper localization of cell fate determining and blastocyst formation gene products and that co-treatment with OA would reverse these effects. Our results demonstrate that PA treatment significantly (P < 0.05) reduces blastocyst development and cell number but did not prevent nuclear localization of YAP in outer cells. PA treatment significantly reduced the number of OCT4+ and CDX2+ nuclei. PA-treated embryos had lower expression of blastocyst formation proteins (E-cadherin, ZO-1 and Na/K-ATPase alpha1 subunit). Importantly, co-treatment of embryos with OA reversed PA-induced effects on blastocyst development and increased inner cell mass (ICM) and trophectoderm (TE) cell numbers and expression of blastocyst formation proteins. Our findings demonstrate that PA treatment does not impede cell fate gene localization but does disrupt proper blastocyst formation gene localization during mouse preimplantation development. OA treatment is protective and reverses PA's detrimental effects. The results advance our understanding of the impact of FFA exposure on mammalian preimplantation development.


Asunto(s)
Desarrollo Embrionario , Ácido Palmítico , Animales , Blastocisto/metabolismo , Diferenciación Celular , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Mamíferos , Ratones , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacología , Embarazo
5.
Exp Cell Res ; 405(2): 112714, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34181938

RESUMEN

Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Isoformas de Proteínas/metabolismo , Piruvato Quinasa/metabolismo , Animales , Diferenciación Celular/fisiología , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Estratos Germinativos/metabolismo , Ratones , Piruvato Quinasa/genética
6.
Stem Cells ; 38(1): 52-66, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31646713

RESUMEN

Characterization of the pluripotent "ground state" has led to a greater understanding of species-specific stem cell differences and has imparted an appreciation of the pluripotency continuum that exists in stem cells in vitro. Pluripotent stem cells are functionally coupled via connexins that serve in gap junctional intercellular communication (GJIC) and here we report that the level of connexin expression in pluripotent stem cells depends upon the state in which stem cells exist in vitro. Human and mouse pluripotent stem cells stabilized in a developmentally primitive or "naïve" state exhibit significantly less connexin expression compared with stem cells which are "primed" for differentiation. This dynamic connexin expression pattern may be governed, in part, by differential regulation by pluripotency transcription factors expressed in each cell state. Species-specific differences do exist, however, with mouse stem cells expressing several additional connexin transcripts not found in human pluripotent stem cells. Moreover, pharmacological inhibition of GJIC shows limited impact on naïve human stem cell survival, self-renewal, and pluripotency but plays a more significant role in primed human pluripotent stem cells. However, CRISPR-Cas9 gene ablation of Cx43 in human and mouse primed and naïve pluripotent stem cells reveals that Cx43 is dispensable in each of these four pluripotent stem cell types.


Asunto(s)
Conexinas/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Comunicación Celular , Diferenciación Celular , Humanos , Ratones
7.
Reprod Biomed Online ; 42(1): 39-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33303367

RESUMEN

Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment.


Asunto(s)
Blastocisto/fisiología , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Transferencia de un Solo Embrión , Animales , Secreciones Corporales , Humanos
8.
BMC Vet Res ; 16(1): 477, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33292200

RESUMEN

Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Animales , Animales Domésticos , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/veterinaria , Células Madre Pluripotentes Inducidas/fisiología , Medicina Regenerativa/métodos , Medicina Veterinaria/métodos
9.
Mol Hum Reprod ; 23(11): 771-785, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28962017

RESUMEN

STUDY QUESTION: What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? SUMMARY ANSWER: AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. WHAT IS KNOWN ALREADY: AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. STUDY DESIGN, SIZE, DURATION: Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 µM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 µM AICAR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. MAIN RESULTS AND THE ROLE OF CHANCE: Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. LARGE SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. WIDER IMPLICATIONS OF THE FINDINGS: Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. STUDY FUNDING AND COMPETING INTEREST(S): Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Blastocisto/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Ribonucleótidos/farmacología , Uniones Estrechas/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/biosíntesis , Aminoimidazol Carboxamida/farmacología , Animales , Blastocisto/metabolismo , Blastocisto/ultraestructura , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas de Cultivo de Embriones , Femenino , Ratones , Oxazinas/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
10.
Mol Hum Reprod ; 22(9): 634-47, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27385725

RESUMEN

STUDY QUESTION: Do high oxygen tension and high glucose concentrations dysregulate p66Shc (Src homologous-collagen homologue adaptor protein) expression during mouse preimplantation embryo culture? SUMMARY ANSWER: Compared with mouse blastocysts in vivo, P66Shc mRNA and protein levels in blastocysts maintained in vitro increased under high oxygen tension (21%), but not high glucose concentration. WHAT IS KNOWN ALREADY: Growth in culture adversely impacts preimplantation embryo development and alters the expression levels of the oxidative stress adaptor protein p66Shc, but it is not known if p66Shc expression is linked to metabolic changes observed in cultured embryos. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We used a standard wild-type CD1 mouse model of preimplantation embryo development and embryo culture with different atmospheric oxygen tension and glucose media concentrations. Changes to p66Shc expression in mouse blastocysts were measured using quantitative RT-PCR, immunoblotting and immunofluorescence followed by confocal microscopy. Changes to oxidative phosphorylation metabolism were measured by total ATP content and superoxide production. Statistical analyses were performed on a minimum of three experimental replicates using Students' t-test or one-way ANOVA. MAIN RESULTS AND THE ROLE OF CHANCE: P66Shc is basally expressed during in vivo mouse preimplantation development. Within in vivo blastocysts, p66Shc is primarily localized to the cell periphery of the trophectoderm. Blastocysts cultured under atmospheric oxygen levels have significantly increased p66Shc mRNA transcript and protein abundances compared to in vivo controls (P < 0.05). However, the ratio of phosphorylated serine 36 (S36) p66Shc to total p66Shc decreased in culture regardless of O2 atmosphere used, supporting a shift in the mitochondrial fraction of p66Shc. Total p66Shc localized to the cell periphery of the blastocyst trophectoderm and phosphorylated S36 p66Shc displayed nuclear and cytoplasmic immunoreactivity, suggesting distinct compartmentalization of phosphorylated S36 p66Shc and the remaining p66Shc fraction. Glucose concentration in the culture medium did not significantly change p66Shc mRNA or protein abundance or its localization. Blastocysts cultured under low or high oxygen conditions exhibited significantly decreased cellular ATP and increased superoxide production compared to in vivo derived embryos (P < 0.05). LIMITATIONS/REASONS FOR CAUTION: This study associates embryonic p66Shc expression levels with metabolic abnormalities but does not directly implicate p66Shc in metabolic changes. Additionally, we used one formulation of embryo culture medium that differs from that used in other mouse model studies and from clinical media used to support human blastocyst development. Our findings may, therefore, be limited to this media, or may be a species-specific phenomenon. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study to show distinct immunolocalization of p66Shc to the trophectoderm of mouse blastocysts and that its levels are abnormally increased in embryos exposed to culture conditions. Changes in p66Shc expression and/or localization could possibly serve as a molecular marker of embryo viability for clinical applications. The outcomes provide insight into the potential metabolic role of p66Shc. Metabolic anomalies are induced even under the current optimal culture conditions, which could negatively impact trophectoderm and placental development. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: Canadian Institutes of Health Research (CIHR) operating funds, Ontario Graduate Scholarship (OGS). There are no competing interests.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Blastocisto/metabolismo , Western Blotting , Línea Celular , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Glucosa/farmacología , Masculino , Ratones , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
11.
RNA Biol ; 13(8): 707-19, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-26786236

RESUMEN

Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/ß-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.


Asunto(s)
Autorrenovación de las Células/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Empalme Alternativo , Animales , Biomarcadores , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Isoenzimas , Mitocondrias/genética , Mitocondrias/metabolismo , Unión Proteica , Telomerasa/genética
12.
FASEB J ; 27(9): 3594-607, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23729591

RESUMEN

Stress-inducible phosphoprotein 1 (STI1) is part of the chaperone machinery, but it also functions as an extracellular ligand for the prion protein. However, the physiological relevance of these STI1 activities in vivo is unknown. Here, we show that in the absence of embryonic STI1, several Hsp90 client proteins are decreased by 50%, although Hsp90 levels are unaffected. Mutant STI1 mice showed increased caspase-3 activation and 50% impairment in cellular proliferation. Moreover, placental disruption and lack of cellular viability were linked to embryonic death by E10.5 in STI1-mutant mice. Rescue of embryonic lethality in these mutants, by transgenic expression of the STI1 gene, supported a unique role for STI1 during embryonic development. The response of STI1 haploinsufficient mice to cellular stress seemed compromised, and mutant mice showed increased vulnerability to ischemic insult. At the cellular level, ischemia increased the secretion of STI1 from wild-type astrocytes by 3-fold, whereas STI1 haploinsufficient mice secreted half as much STI1. Interesting, extracellular STI1 prevented ischemia-mediated neuronal death in a prion protein-dependent way. Our study reveals essential roles for intracellular and extracellular STI1 in cellular resilience.


Asunto(s)
Embrión de Mamíferos/metabolismo , Proteínas de Choque Térmico/metabolismo , Isquemia/metabolismo , Chaperonas Moleculares/metabolismo , Priones/metabolismo , Animales , Blastocisto/metabolismo , Western Blotting , Factor de Transcripción CDX2 , Células Cultivadas , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Técnicas In Vitro , Isquemia/genética , Ratones , Ratones Mutantes , Chaperonas Moleculares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Embarazo , Priones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Mol Cell Proteomics ; 11(12): 1924-36, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023296

RESUMEN

The cellular microenvironment comprises soluble factors, support cells, and components of the extracellular matrix (ECM) that combine to regulate cellular behavior. Pluripotent stem cells utilize interactions between support cells and soluble factors in the microenvironment to assist in the maintenance of self-renewal and the process of differentiation. However, the ECM also plays a significant role in shaping the behavior of human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells. Moreover, it has recently been observed that deposited factors in a hESC-conditioned matrix have the potential to contribute to the reprogramming of metastatic melanoma cells. Therefore, the ECM component of the pluripotent stem cell microenvironment necessitates further analysis. In this study we first compared the self-renewal and differentiation properties of hESCs grown on Matrigel™ pre-conditioned by hESCs to those on unconditioned Matrigel™. We determined that culture on conditioned Matrigel™ prevents differentiation when supportive growth factors are removed from the culture medium. To investigate and identify factors potentially responsible for this beneficial effect, we performed a defined SILAC MS-based proteomics screen of hESC-conditioned Matrigel™. From this proteomics screen, we identified over 80 extracellular proteins in matrix conditioned by hESCs and induced pluripotent stem cells. These included matrix-associated factors that participate in key stem cell pluripotency regulatory pathways, such as Nodal/Activin and canonical Wnt signaling. This work represents the first investigation of stem-cell-derived matrices from human pluripotent stem cells using a defined SILAC MS-based proteomics approach.


Asunto(s)
Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Proteoma/análisis , Activinas/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Microambiente Celular , Colágeno , Combinación de Medicamentos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Laminina , Espectrometría de Masas , Proteína Nodal/metabolismo , Células Madre Pluripotentes/citología , Proteoglicanos , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
14.
Mol Reprod Dev ; 80(1): 22-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23109234

RESUMEN

The in vitro production of mammalian embryos suffers from low efficiency, with 50-70% of all fertilized oocytes failing to develop to the blastocyst stage. This high rate of developmental failure is due, in part, to the effects of oxidative stress generated by reactive oxygen species (ROS). The p66Shc adaptor protein controls oxidative stress response by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidants. This study explored the relationship between p66Shc levels, redox state, and developmental potential in early bovine embryos. Embryo developmental potential was established based on observing their time of first cleavage. P66Shc, catalase, and mitochondrial-specific, manganese-superoxide dismutate (MnSOD) levels were compared between embryos with high and low developmental potentials. Additionally, p66Shc, catalase, and MnSOD content were assayed following a variety of oxidative stress-inducing and-alleviating conditions. Increased developmental potential correlated with significantly lower p66Shc content, significantly higher levels of catalase and MnSOD, and significantly lower intracellular ROS levels (MitoSOX staining) and reduced DNA damage (γ-H2A.X(phospho S139) immunostaining). p66Shc content was increased by either high (20%) O(2) culture or H(2)O(2) treatment, and significantly decreased by supplementing culture media with the antioxidant polyethylene glycol-conjugated catalase. While the abundance of p66Shc varied according to pro/anti-oxidant culture conditions, antioxidant content varied only according to developmental potential. This discrepancy has important implications regarding ongoing efforts towards maximizing in vitro embryo production.


Asunto(s)
Bovinos/embriología , Espacio Intracelular/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Animales , Catalasa/análisis , Catalasa/genética , Catalasa/metabolismo , Daño del ADN , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Adaptadoras de la Señalización Shc/análisis , Proteínas Adaptadoras de la Señalización Shc/genética , Superóxido Dismutasa/análisis , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/análisis , Superóxidos/metabolismo
15.
J Dev Biol ; 11(2)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37092479

RESUMEN

Normalizing RT-qPCR miRNA datasets that encompass numerous preimplantation embryo stages requires the identification of miRNAs that may be used as stable reference genes. A need has also arisen for the normalization of the accompanying conditioned culture media as extracellular miRNAs may serve as biomarkers of embryo developmental competence. Here, we evaluate the stability of six commonly used miRNA normalization candidates, as well as small nuclear U6, using five different means of evaluation (BestKeeper, NormFinder, geNorm, the comparative Delta Ct method and RefFinder comprehensive analysis) to assess their stability throughout murine preimplantation embryo development from the oocyte to the late blastocyst stages, both in whole embryos and the associated conditioned culture media. In descending order of effectiveness, miR-16, miR-191 and miR-106 were identified as the most stable individual reference miRNAs for developing whole CD1 murine preimplantation embryos, while miR-16, miR-106 and miR-103 were ideal for the conditioned culture media. Notably, the widely used U6 reference was among the least appropriate for normalizing both whole embryo and conditioned media miRNA datasets. Incorporating multiple reference miRNAs into the normalization basis via a geometric mean was deemed beneficial, and combinations of each set of stable miRNAs are further recommended, pending validation on a per experiment basis.

16.
Stem Cells Dev ; 32(15-16): 434-449, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183401

RESUMEN

The ShcA adapter protein is necessary for early embryonic development. The role of ShcA in development is primarily attributed to its 52 and 46 kDa isoforms that transduce receptor tyrosine kinase signaling through the extracellular signal regulated kinase (ERK). During embryogenesis, ERK acts as the primary signaling effector, driving fate acquisition and germ layer specification. P66Shc, the largest of the ShcA isoforms, has been observed to antagonize ERK in several contexts; however, its role during embryonic development remains poorly understood. We hypothesized that p66Shc could act as a negative regulator of ERK activity during embryonic development, antagonizing early lineage commitment. To explore the role of p66Shc in stem cell self-renewal and differentiation, we created a p66Shc knockout murine embryonic stem cell (mESC) line. Deletion of p66Shc enhanced basal ERK activity, but surprisingly, instead of inducing mESC differentiation, loss of p66Shc enhanced the expression of core and naive pluripotency markers. Using pharmacologic inhibitors to interrogate potential signaling mechanisms, we discovered that p66Shc deletion permits the self-renewal of naive mESCs in the absence of conventional growth factors, by increasing their responsiveness to leukemia inhibitory factor (LIF). We discovered that loss of p66Shc enhanced not only increased ERK phosphorylation but also increased phosphorylation of Signal transducer and activator of transcription in mESCs, which may be acting to stabilize their naive-like identity, desensitizing them to ERK-mediated differentiation cues. These findings identify p66Shc as a regulator of both LIF-mediated ESC pluripotency and of signaling cascades that initiate postimplantation embryonic development and ESC commitment.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Células Madre Embrionarias de Ratones , Animales , Ratones , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/farmacología , Factor Inhibidor de Leucemia/metabolismo , Diferenciación Celular , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
17.
Stem Cells Dev ; 32(11-12): 271-291, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36884307

RESUMEN

Induced pluripotent stem cells (iPSCs) are produced by resetting the epigenetic and transcriptional landscapes of somatic cells to express the endogenous pluripotency network and revert them back to an undifferentiated state. The reduced ethical concerns associated with iPSCs and their capacity for extensive self-renewal and differentiation make them an unparalleled resource for drug discovery, disease modeling, and novel therapies. Canines (c) share many human diseases and environmental exposures, making them a superior translational model for drug screening and investigating human pathologies compared to other mammals. However, well-defined protocols for legitimate ciPSC production are lacking. Problems during canine somatic cell reprogramming (SCR) yield putative ciPSCs with incomplete pluripotency, at very low efficiencies. Despite the value of ciPSCs, the molecular mechanisms underlying their unsuccessful production and how these may be addressed have not been fully elucidated. Factors, including cost, safety, and feasibility, may also limit the widespread clinical adoption of ciPSCs for treating canine disease. The purpose of this narrative review is to identify barriers to canine SCR on molecular and cellular levels, using comparative research to inform potential solutions to their use in both research and clinical contexts. Current research is opening new doors for the application of ciPSCs in regenerative medicine for the mutual benefit of veterinary and human medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Perros , Humanos , Diferenciación Celular , Reprogramación Celular/genética , Mamíferos
18.
Methods Mol Biol ; 2490: 69-79, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35486240

RESUMEN

This chapter details 3D morphological topography of colony architecture optimization and nuclear protein localization by co-immunofluorescent confocal microscopy analysis. Colocalization assessment of nuclear and cytoplasmic cell regions is detailed to demonstrate nuclear and cytoplasmic localization in mEpiSCs by confocal microscopy and orthogonal colocalization assessment. Protein colocalization within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.


Asunto(s)
Estratos Germinativos , Células Madre Embrionarias de Ratones , Animales , Núcleo Celular , Colorantes , Citoplasma , Ratones , Microscopía Confocal
19.
Stem Cells Dev ; 31(11-12): 278-295, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469439

RESUMEN

Cellular metabolism plays both an active and passive role in embryonic development, pluripotency, and cell-fate decisions. However, little is known regarding the role of metabolism in regulating the recently described "formative" pluripotent state. The pluripotent developmental continuum features a metabolic switch from a bivalent metabolism (both glycolysis and oxidative phosphorylation) in naive cells, to predominantly glycolysis in primed cells. We investigated the role of pyruvate kinase muscle isoforms 1/2 (PKM1/2) in naive, formative, and primed mouse embryonic stem cells through modulation of PKM1/2 messenger RNA transcripts using steric blocking morpholinos that downregulate PKM2 and upregulate PKM1. We have examined these effects in naive, formative, and primed cells by quantifying the effects of PKM1/2 modulation on pluripotent and metabolic transcripts and by measuring shifts in the population frequencies of cells expressing naive and primed cell surface markers by flow cytometry. Our results demonstrate that modulating PKM1 and PKM2 levels alters the transition from the naive state into a primed pluripotent state by enhancing the proportion of the affected cells seen in the "formative" state. Therefore, we conclude that PKM1/2 actively contributes to mechanisms that oversee early stem pluripotency and their progression toward a primed pluripotent state.


Asunto(s)
Células Madre Pluripotentes , Piruvato Quinasa , Animales , Diferenciación Celular/genética , Ratones , Morfolinos/metabolismo , Músculos , Células Madre Pluripotentes/metabolismo , Isoformas de Proteínas , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
20.
Methods Mol Biol ; 2490: 81-92, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35486241

RESUMEN

Here we describe methodologies to characterize, delineate, and quantify pluripotent cells between naïve, formative, and primed pluripotent state mouse embryonic stem cell (mESCs) populations using flow cytometric analysis. This methodology can validate pluripotent states, sort individual cells of interest, and determine the efficiency of transitioning naïve mESCs to a primed-like state as mouse epiblast-like cells (mEpiLCs) and onto fully primed mouse epiblast stem cells (mEpiSCs). Quantification of the cell surface markers; SSEA1(CD15) and CD24 introduces an effective method of distinguishing individual cells from a population by their respective positioning in the pluripotent spectrum. Additionally, this protocol can be used to demarcate and sort cells via fluorescently activated cell sorting for downstream applications. Flow cytometric analysis within mESCs, mEpiLCs, and mEpiSCs can be efficiently completed using these optimized protocols.


Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Estratos Germinativos , Ratones , Células Madre Embrionarias de Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA