Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33188777

RESUMEN

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Asunto(s)
Biosíntesis de Proteínas , Virus ARN/fisiología , Replicación Viral/fisiología , Línea Celular Tumoral , Supervivencia Celular , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Transporte de ARN , ARN Viral/genética , Reproducibilidad de los Resultados , Imagen Individual de Molécula , Factores de Tiempo
2.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32407674

RESUMEN

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Asunto(s)
Células Enteroendocrinas/metabolismo , ARN Mensajero/genética , Células Cultivadas , Hormonas Gastrointestinales/genética , Tracto Gastrointestinal/metabolismo , Péptido 1 Similar al Glucagón/genética , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Transcriptoma/genética
3.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978343

RESUMEN

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/crecimiento & desarrollo , Venenos de Serpiente/metabolismo , Células Madre Adultas/metabolismo , Animales , Serpientes de Coral/metabolismo , Perfilación de la Expresión Génica/métodos , Organoides/metabolismo , Glándulas Salivales/metabolismo , Venenos de Serpiente/genética , Serpientes/genética , Serpientes/crecimiento & desarrollo , Células Madre/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
4.
Cell ; 176(5): 1158-1173.e16, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30712869

RESUMEN

Homeostatic regulation of the intestinal enteroendocrine lineage hierarchy is a poorly understood process. We resolved transcriptional changes during enteroendocrine differentiation in real time at single-cell level using a novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification. A bi-fluorescent reporter, Neurog3Chrono, measures time from the onset of enteroendocrine differentiation and enables precise positioning of single-cell transcriptomes along an absolute time axis. This approach yielded a definitive description of the enteroendocrine hierarchy and its sub-lineages, uncovered differential kinetics between sub-lineages, and revealed time-dependent hormonal plasticity in enterochromaffin and L cells. The time-resolved map of transcriptional changes predicted multiple novel molecular regulators. Nine of these were validated by conditional knockout in mice or CRISPR modification in intestinal organoids. Six novel candidate regulators (Sox4, Rfx6, Tox3, Myt1, Runx1t1, and Zcchc12) yielded specific enteroendocrine phenotypes. Our time-resolved single-cell transcriptional map presents a rich resource to unravel enteroendocrine differentiation.


Asunto(s)
Linaje de la Célula/genética , Células Enteroendocrinas/metabolismo , Perfilación de la Expresión Génica/métodos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Linaje de la Célula/fisiología , Células Enteroendocrinas/fisiología , Colorantes Fluorescentes , Proteínas de Homeodominio/genética , Mucosa Intestinal/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Imagen Óptica/métodos , Organoides , Fenotipo , Análisis de la Célula Individual/métodos , Células Madre , Factores de Transcripción/genética , Transcriptoma/genética
5.
Nat Rev Mol Cell Biol ; 22(1): 39-53, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32958874

RESUMEN

Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Mucosa Intestinal/citología , Regeneración , Células Madre/citología , Animales , Humanos , Transducción de Señal
6.
Cell ; 170(1): 10-11, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666112

RESUMEN

Gut-brain signaling plays a central role in a range of homeostatic processes, yet details of this cross-talk remain enigmatic. In this issue of Cell, Bellono and colleagues identify a variety of luminal stimuli acting on serotonin-secreting enteroendocrine cells and, for the first time, demonstrate a functional synaptic interaction with neurons.


Asunto(s)
Células Enteroendocrinas , Serotonina , Transducción de Señal , Olfato
8.
Nature ; 580(7802): 269-273, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106218

RESUMEN

Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Islas Genómicas/genética , Mutagénesis , Mutación , Técnicas de Cocultivo , Estudios de Cohortes , Secuencia de Consenso , Daño del ADN , Microbioma Gastrointestinal , Humanos , Organoides/citología , Organoides/metabolismo , Organoides/microbiología , Péptidos/genética , Policétidos
9.
EMBO J ; 40(5): e105912, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33283287

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Modelos Biológicos , Organoides/metabolismo , SARS-CoV-2/fisiología , Replicación Viral , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , COVID-19/virología , Chlorocebus aethiops , Regulación de la Expresión Génica , Humanos , Interferón Tipo I/biosíntesis , Interferones/biosíntesis , Organoides/patología , Organoides/virología , Células Vero , Interferón lambda
10.
Proc Natl Acad Sci U S A ; 119(46): e2212057119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343264

RESUMEN

Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched proteases are associated with endocrinopathies. Due to the relative rarity of EECs and a paucity of in vitro models, intestinal prohormone processing remains challenging to assess. Here, human gut organoids in which EECs can efficiently be induced are subjected to CRISPR-Cas9-mediated modification of EEC-expressed endopeptidase and exopeptidase genes. We employ mass spectrometry-based analyses to monitor peptide processing and identify glucagon production in intestinal EECs, stimulated upon bone morphogenic protein (BMP) signaling. We map the substrates and products of major EECs endo- and exopeptidases. Our studies provide a comprehensive description of peptide hormones produced by human EECs and define the roles of specific proteases in their generation.


Asunto(s)
Organoides , Péptido Hidrolasas , Humanos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Células Enteroendocrinas/metabolismo , Insulina/metabolismo , Endopeptidasas/metabolismo
11.
J Virol ; 97(8): e0085123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37555660

RESUMEN

SARS-CoV-2 can enter cells after its spike protein is cleaved by either type II transmembrane serine proteases (TTSPs), like TMPRSS2, or cathepsins. It is now widely accepted that the Omicron variant uses TMPRSS2 less efficiently and instead enters cells via cathepsins, but these findings have yet to be verified in more relevant cell models. Although we could confirm efficient cathepsin-mediated entry for Omicron in a monkey kidney cell line, experiments with protease inhibitors showed that Omicron (BA.1 and XBB1.5) did not use cathepsins for entry into human airway organoids and instead utilized TTSPs. Likewise, CRISPR-edited intestinal organoids showed that entry of Omicron BA.1 relied on the expression of the serine protease TMPRSS2 but not cathepsin L or B. Together, these data force us to rethink the concept that Omicron has adapted to cathepsin-mediated entry and indicate that TTSP inhibitors should not be dismissed as prophylactic or therapeutic antiviral strategy against SARS-CoV-2. IMPORTANCE Coronavirus entry relies on host proteases that activate the viral fusion protein, spike. These proteases determine the viral entry route, tropism, host range, and can be attractive drug targets. Whereas earlier studies using cell lines suggested that the Omicron variant of SARS-CoV-2 has changed its protease usage, from cell surface type II transmembrane serine proteases (TTSPs) to endosomal cathepsins, we report that this is not the case in human airway and intestinal organoid models, suggesting that host TTSP inhibition is still a viable prophylactic or therapeutic antiviral strategy against current SARS-CoV-2 variants and highlighting the importance of relevant human in vitro cell models.


Asunto(s)
Serina Proteasas , Humanos , Antivirales , COVID-19/virología , SARS-CoV-2/fisiología , Serina Proteasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
12.
Development ; 143(20): 3639-3649, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802133

RESUMEN

The intestinal epithelium is the fastest renewing tissue in mammals and has a large flexibility to adapt to different types of damage. Lgr5+ crypt base columnar (CBC) cells act as stem cells during homeostasis and are essential during regeneration. Upon perturbation, the activity of CBCs is dynamically regulated to maintain homeostasis and multiple dedicated progenitor cell populations can reverse to the stem cell state upon damage, adding another layer of compensatory mechanisms to facilitate regeneration. Here, we review our current understanding of how intestinal stem and progenitor cells contribute to homeostasis and regeneration, and the different signaling pathways that regulate their behavior. Nutritional state and inflammation have been recently identified as upstream regulators of stem cell activity in the mammalian intestine, and we explore how these systemic signals can influence homeostasis and regeneration.


Asunto(s)
Intestinos/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Homeostasis/genética , Homeostasis/fisiología , Humanos , Mucosa Intestinal/metabolismo , Regeneración/genética , Regeneración/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
EMBO J ; 33(18): 2057-68, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25092767

RESUMEN

Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67- cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.


Asunto(s)
Diferenciación Celular , Perfilación de la Expresión Génica , Genes Reporteros , Receptores Acoplados a Proteínas G/análisis , Células Madre/fisiología , Animales , División Celular , Técnicas de Sustitución del Gen , Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Antígeno Ki-67/biosíntesis , Antígeno Ki-67/genética , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones , Análisis por Micromatrices , Células Madre/química , Vía de Señalización Wnt
14.
Proc Natl Acad Sci U S A ; 112(47): E6476-85, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26542681

RESUMEN

Lung adenocarcinoma, a major form of non-small cell lung cancer, is the leading cause of cancer deaths. The Cancer Genome Atlas analysis of lung adenocarcinoma has identified a large number of previously unknown copy number alterations and mutations, requiring experimental validation before use in therapeutics. Here, we describe an shRNA-mediated high-throughput approach to test a set of genes for their ability to function as tumor suppressors in the background of mutant KRas and WT Tp53. We identified several candidate genes from tumors originated from lentiviral delivery of shRNAs along with Cre recombinase into lungs of Loxp-stop-Loxp-KRas mice. Ephrin receptorA2 (EphA2) is among the top candidate genes and was reconfirmed by two distinct shRNAs. By generating knockdown, inducible knockdown and knockout cell lines for loss of EphA2, we showed that negating its expression activates a transcriptional program for cell proliferation. Loss of EPHA2 releases feedback inhibition of KRAS, resulting in activation of ERK1/2 MAP kinase signaling, leading to enhanced cell proliferation. Intriguingly, loss of EPHA2 induces activation of GLI1 transcription factor and hedgehog signaling that further contributes to cell proliferation. Small molecules targeting MEK1/2 and Smoothened hamper proliferation in EphA2-deficient cells. Additionally, in EphA2 WT cells, activation of EPHA2 by its ligand, EFNA1, affects KRAS-RAF interaction, leading to inhibition of the RAS-RAF-MEK-ERK pathway and cell proliferation. Together, our studies have identified that (i) EphA2 acts as a KRas cooperative tumor suppressor by in vivo screen and (ii) reactivation of the EphA2 signal may serve as a potential therapeutic for KRas-induced human lung cancers.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor EphA2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenocarcinoma del Pulmón , Animales , Secuencia de Bases , Carcinogénesis/patología , Proliferación Celular , Activación Enzimática , Técnicas de Silenciamiento del Gen , Genoma Humano , Proteínas Hedgehog/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Datos de Secuencia Molecular , Mutación/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cell Stem Cell ; 31(1): 7-24, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181752

RESUMEN

All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.


Asunto(s)
Mamíferos , Nicho de Células Madre , Animales , Células Madre
17.
Nat Biomed Eng ; 8(4): 345-360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114742

RESUMEN

Predicting the toxicity of cancer immunotherapies preclinically is challenging because models of tumours and healthy organs do not typically fully recapitulate the expression of relevant human antigens. Here we show that patient-derived intestinal organoids and tumouroids supplemented with immune cells can be used to study the on-target off-tumour toxicities of T-cell-engaging bispecific antibodies (TCBs), and to capture clinical toxicities not predicted by conventional tissue-based models as well as inter-patient variabilities in TCB responses. We analysed the mechanisms of T-cell-mediated damage of neoplastic and donor-matched healthy epithelia at a single-cell resolution using multiplexed immunofluorescence. We found that TCBs that target the epithelial cell-adhesion molecule led to apoptosis in healthy organoids in accordance with clinical observations, and that apoptosis is associated with T-cell activation, cytokine release and intra-epithelial T-cell infiltration. Conversely, tumour organoids were more resistant to damage, probably owing to a reduced efficiency of T-cell infiltration within the epithelium. Patient-derived intestinal organoids can aid the study of immune-epithelial interactions as well as the preclinical and clinical development of cancer immunotherapies.


Asunto(s)
Anticuerpos Biespecíficos , Apoptosis , Organoides , Linfocitos T , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Humanos , Organoides/inmunología , Linfocitos T/inmunología , Intestinos/inmunología , Inmunoterapia/métodos , Molécula de Adhesión Celular Epitelial/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Femenino , Mucosa Intestinal/inmunología
18.
Cell Rep ; 43(1): 113614, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38159278

RESUMEN

Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.


Asunto(s)
Acuaporina 2 , Litio , Adulto , Humanos , Litio/farmacología , Nefronas , Riñón , Electrólitos , Organoides
19.
Cancer Cell ; 41(12): 2083-2099.e9, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38086335

RESUMEN

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/patología
20.
Cell Rep ; 38(9): 110438, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235783

RESUMEN

Intestinal epithelial cells derive from stem cells at the crypt base and travel along the crypt-villus axis to die at the villus tip. The two dominant villus epithelial cell types, absorptive enterocytes and mucous-secreting goblet cells, are mature when they exit crypts. Murine enterocytes switch functional cell states during migration along the villus. Here, we ask whether this zonation is driven by the bone morphogenetic protein (BMP) gradient, which increases toward the villus. Using human intestinal organoids, we show that BMP signaling controls the expression of zonated genes in enterocytes. We find that goblet cells display similar zonation involving antimicrobial genes. Using an inducible Bmpr1a knockout mouse model, we confirm that BMP controls these zonated genes in vivo. Our findings imply that local manipulation of BMP signal strength may be used to reset the enterocyte "rheostat" of carbohydrate versus lipid uptake and to control the antimicrobial response through goblet cells.


Asunto(s)
Enterocitos , Células Caliciformes , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA