Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 446, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610811

RESUMEN

BACKGROUND: Alfalfa (Medicago sativa L.) production decreases under salt stress. Identification of genes associated with salt tolerance in alfalfa is essential for the development of molecular markers used for breeding and genetic improvement. RESULT: An RNA-Seq technique was applied to identify the differentially expressed genes (DEGs) associated with salt stress in two alfalfa cultivars: salt tolerant 'Halo' and salt intolerant 'Vernal'. Leaf and root tissues were sampled for RNA extraction at 0 h, 3 h, and 27 h under 12 dS m- 1 salt stress maintained by NaCl. The sequencing generated a total of 381 million clean sequence reads and 84.8% were mapped on to the alfalfa reference genome. A total of 237 DEGs were identified in leaves and 295 DEGs in roots of the two alfalfa cultivars. In leaf tissue, the two cultivars had a similar number of DEGs at 3 h and 27 h of salt stress, with 31 and 49 DEGs for 'Halo', 34 and 50 for 'Vernal', respectively. In root tissue, 'Halo' maintained 55 and 56 DEGs at 3 h and 27 h, respectively, while the number of DEGs decreased from 42 to 10 for 'Vernal'. This differential expression pattern highlights different genetic responses of the two cultivars to salt stress at different time points. Interestingly, 28 (leaf) and 31 (root) salt responsive candidate genes were highly expressed in 'Halo' compared to 'Vernal' under salt stress, of which 13 candidate genes were common for leaf and root tissues. About 60% of DEGs were assigned to known gene ontology (GO) categories. The genes were involved in transmembrane protein function, photosynthesis, carbohydrate metabolism, defense against oxidative damage, cell wall modification and protection against lipid peroxidation. Ion binding was found to be a key molecular activity for salt tolerance in alfalfa under salt stress. CONCLUSION: The identified DEGs are significant for understanding the genetic basis of salt tolerance in alfalfa. The generated genomic information is useful for molecular marker development for alfalfa genetic improvement for salt tolerance.


Asunto(s)
Medicago sativa/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Medicago sativa/fisiología , Estrés Salino/fisiología , Tolerancia a la Sal/fisiología , Transcriptoma
2.
J Plant Physiol ; 264: 153485, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34358945

RESUMEN

Soil salinity is a global concern and often the primary factor contributing to land degradation, limiting crop growth and production. Alfalfa (Medicago sativa L.) is a low input high value forage legume with a wide adaptation. Examining the tissue-specific responses to salt stress will be important to understanding physiological changes of alfalfa. The responses of two alfalfa cultivars (salt tolerant 'Halo', salt intolerant 'Vernal') were studied for 12 weeks in five gradients of salt stress in a sand based hydroponic system in the greenhouse. The accumulation and localization of elements and organic compounds in different tissues of alfalfa under salt stress were evaluated using synchrotron beamlines. The pattern of chlorine accumulation for 'Halo' was: root > stem ~ leaf at 8 dSm-1, and root ~ leaf > stem at 12 dSm-1, potentially preventing toxic ion accumulation in leaf tissues. In contrast, for 'Vernal', it was leaf > stem ~ root at 8 dSm-1 and leaf > root ~ stem at 12 dSm-1. The distribution of chlorine in 'Halo' was relatively uniform in the leaf surface and vascular bundles of the stem. Amide concentration in the leaf and stem tissues was greater for 'Halo' than 'Vernal' at all salt gradients. This study determined that low ion accumulation in the shoot was a common strategy in salt tolerant alfalfa up to 8 dSm-1 of salt stress, which was then replaced by shoot tissue tolerance at 12 dSm-1.


Asunto(s)
Medicago sativa/metabolismo , Calcio/análisis , Calcio/metabolismo , Cloro/análisis , Cloro/metabolismo , Medicago sativa/química , Medicago sativa/fisiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Potasio/análisis , Potasio/metabolismo , Estrés Salino , Tolerancia a la Sal , Sodio/análisis , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA