Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cell ; 175(1): 239-253.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197081

RESUMEN

Many disease-causing missense mutations affect intrinsically disordered regions (IDRs) of proteins, but the molecular mechanism of their pathogenicity is enigmatic. Here, we employ a peptide-based proteomic screen to investigate the impact of mutations in IDRs on protein-protein interactions. We find that mutations in disordered cytosolic regions of three transmembrane proteins (GLUT1, ITPR1, and CACNA1H) lead to an increased clathrin binding. All three mutations create dileucine motifs known to mediate clathrin-dependent trafficking. Follow-up experiments on GLUT1 (SLC2A1), the glucose transporter causative of GLUT1 deficiency syndrome, revealed that the mutated protein mislocalizes to intracellular compartments. Mutant GLUT1 interacts with adaptor proteins (APs) in vitro, and knocking down AP-2 reverts the cellular mislocalization and restores glucose transport. A systematic analysis of other known disease-causing variants revealed a significant and specific overrepresentation of gained dileucine motifs in structurally disordered cytosolic domains of transmembrane proteins. Thus, several mutations in disordered regions appear to cause "dileucineopathies."


Asunto(s)
Transportador de Glucosa de Tipo 1/fisiología , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/fisiología , Errores Innatos del Metabolismo de los Carbohidratos , Clatrina/metabolismo , Citoplasma/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Proteínas Intrínsecamente Desordenadas/metabolismo , Leucina/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Monosacáridos/deficiencia , Mutación/genética , Péptidos , Unión Proteica , Proteómica/métodos
2.
Cell ; 151(2): 289-303, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23021777

RESUMEN

Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.


Asunto(s)
Redes Reguladoras de Genes , Células Th17/citología , Células Th17/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Antígeno 2 Relacionado con Fos/inmunología , Antígeno 2 Relacionado con Fos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/inmunología
3.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862660

RESUMEN

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteína MioD/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Células Cultivadas , Ratones , Proteína MioD/genética , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción HES-1/genética
4.
Genes Dev ; 33(23-24): 1673-1687, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699777

RESUMEN

Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine Bim 3' UTR miR-17∼92 seed matches. Blocking miR-17∼92:Bim interactions early in development phenocopied the lethal lung phenotype of miR-17∼92 ablation and generated a skeletal kinky tail. In the hematopoietic system, instead of causing the predicted B cell developmental block, it produced a selective inability of B cells to resist cellular stress; and prevented B and T cell hyperplasia caused by Bim haploinsufficiency. Thus, the interaction of miR-17∼92 with a single target is essential for life, and BIM regulation by miRNAs serves as a rheostat controlling cell survival in specific physiological contexts.


Asunto(s)
Linfocitos B/citología , Proteína 11 Similar a Bcl2/metabolismo , Supervivencia Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hematopoyesis/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Linfocitos B/patología , Proteína 11 Similar a Bcl2/genética , Técnicas de Inactivación de Genes , Pulmón/embriología , Ratones , MicroARNs/genética , Mutación , Estrés Fisiológico
5.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748249

RESUMEN

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Asunto(s)
Colesterol/biosíntesis , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Colesterol/genética , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-maf/genética , Ratas , Ratas Wistar
6.
Cell ; 139(2): 366-79, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19837037

RESUMEN

Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise as a result of lack of neuronal specification by Hmx1 homeobox gene function in the neural crest ventral migratory pathway. Schwann cell and melanocyte development share signaling molecules with both the glial and melanocyte cell fates intimately linked to nerve contact and regulated in an opposing manner by Neuregulin and soluble signals including insulin-like growth factor and platelet-derived growth factor. These results reveal SCPs as a cellular origin of melanocytes, and have broad implications on the molecular mechanisms regulating skin pigmentation during development, in health and pigmentation disorders.


Asunto(s)
Melanocitos/citología , Células de Schwann/citología , Piel/inervación , Animales , Diferenciación Celular , Movimiento Celular , Proteínas de Homeodominio , Ratones , Neuroglía , Receptor ErbB-3/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo
7.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766573

RESUMEN

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Asunto(s)
Proteoglicanos/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Electroencefalografía , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteoglicanos/análisis , Proteoglicanos/genética , Receptores AMPA/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética
8.
Development ; 147(19)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32591430

RESUMEN

Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factor de Transcripción PAX7/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/genética , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética
9.
Proc Natl Acad Sci U S A ; 117(13): 7471-7481, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170013

RESUMEN

Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.


Asunto(s)
Proteínas Portadoras/metabolismo , Caveolas/metabolismo , Ácidos Grasos/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30049711

RESUMEN

Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.


Asunto(s)
Hipocampo/metabolismo , Interneuronas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Red Nerviosa/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Animales , Hipocampo/citología , Interneuronas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Neurregulinas , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Sinapsis/genética
11.
Development ; 146(17)2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31427287

RESUMEN

Feeding and breathing are essential motor functions and rely on the activity of hypoglossal and phrenic motor neurons that innervate the tongue and diaphragm, respectively. Little is known about the genetic programs that control the development of these neuronal subtypes. The transcription factor Tshz1 is strongly and persistently expressed in developing hypoglossal and phrenic motor neurons. We used conditional mutation of Tshz1 in the progenitor zone of motor neurons (Tshz1MNΔ) to show that Tshz1 is essential for survival and function of hypoglossal and phrenic motor neurons. Hypoglossal and phrenic motor neurons are born in correct numbers, but many die between embryonic day 13.5 and 14.5 in Tshz1MNΔ mutant mice. In addition, innervation and electrophysiological properties of phrenic and hypoglossal motor neurons are altered. Severe feeding and breathing problems accompany this developmental deficit. Although motor neuron survival can be rescued by elimination of the pro-apoptotic factor Bax, innervation, feeding and breathing defects persist in Bax-/-; Tshz1MNΔ mutants. We conclude that Tshz1 is an essential transcription factor for the development and physiological function of phrenic and hypoglossal motor neurons.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Nervio Hipogloso/citología , Neuronas Motoras/fisiología , Nervio Frénico/citología , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/genética , Supervivencia Celular/genética , Diafragma/inervación , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Mutación , Pletismografía , Proteínas Represoras/genética , Respiración , Lengua/inervación , Proteína X Asociada a bcl-2/genética
12.
Exp Cell Res ; 409(2): 112933, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793773

RESUMEN

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. Muscle stem cells can proliferate, they can generate differentiating cells, or they self-renew to produce new stem cells. Notch signaling plays a crucial role in this process. Recent studies revealed that expression of the Notch effector HES1 oscillates in activated muscle stem cells. The oscillatory expression of HES1 periodically represses transcription from the genes encoding the myogenic transcription factor MYOD and the Notch ligand DLL1, thereby driving MYOD and DLL1 oscillations. This oscillatory network allows muscle progenitor cells and activated muscle stem cells to remain in a proliferative and 'undecided' state, in which they can either differentiate or self-renew. When HES1 is downregulated, MYOD oscillations become unstable and are replaced by sustained expression, which drives the cells into terminal differentiation. During development and regeneration, proliferating stem cells contact each other and the stability of the oscillatory expression depends on regular DLL1 inputs provided by neighboring cells. In such communities of cells that receive and provide Notch signals, the appropriate timing of DLL1 inputs is important, as sustained DLL1 cannot replace oscillatory DLL1. Thus, in cell communities, DLL1 oscillations ensure the appropriate balance between self-renewal and differentiation. In summary, oscillations in myogenic cells are an important example of dynamic gene expression determining cell fate.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/citología , Periodicidad , Receptores Notch/metabolismo , Células Madre/citología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Humanos , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Receptores Notch/genética , Células Madre/metabolismo , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
13.
Genes Dev ; 28(3): 290-303, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24493648

RESUMEN

Myelination depends on the synthesis of large amounts of myelin transcripts and proteins and is controlled by Nrg1/ErbB/Shp2 signaling. We developed a novel pulse labeling strategy based on stable isotope labeling with amino acids in cell culture (SILAC) to measure the dynamics of myelin protein production in mice. We found that protein synthesis is dampened in the maturing postnatal peripheral nervous system, and myelination then slows down. Remarkably, sustained activation of MAPK signaling by expression of the Mek1DD allele in mice overcomes the signals that end myelination, resulting in continuous myelin growth. MAPK activation leads to minor changes in transcript levels but massively up-regulates protein production. Pharmacological interference in vivo demonstrates that the effects of activated MAPK signaling on translation are mediated by mTOR-independent mechanisms but in part also by mTOR-dependent mechanisms. Previous work demonstrated that loss of ErbB3/Shp2 signaling impairs Schwann cell development and disrupts the myelination program. We found that activated MAPK signaling strikingly compensates for the absence of ErbB3 or Shp2 during Schwann cell development and myelination.


Asunto(s)
Diferenciación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/citología , Alelos , Animales , Regulación de la Expresión Génica/genética , MAP Quinasa Quinasa 1/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Microscopía Electrónica de Transmisión , Complejos Multiproteicos , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptor ErbB-3/genética , Células de Schwann/ultraestructura , Transducción de Señal , Serina-Treonina Quinasas TOR
14.
Proc Natl Acad Sci U S A ; 115(51): 13021-13026, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30487221

RESUMEN

The respiratory rhythm is generated by the preBötzinger complex in the medulla oblongata, and is modulated by neurons in the retrotrapezoid nucleus (RTN), which are essential for accelerating respiration in response to high CO2 Here we identify a LBX1 frameshift (LBX1FS ) mutation in patients with congenital central hypoventilation. The mutation alters the C-terminal but not the DNA-binding domain of LBX1 Mice with the analogous mutation recapitulate the breathing deficits found in humans. Furthermore, the mutation only interferes with a small subset of Lbx1 functions, and in particular with development of RTN neurons that coexpress Lbx1 and Phox2b. Genome-wide analyses in a cell culture model show that Lbx1FS and wild-type Lbx1 proteins are mostly bound to similar sites, but that Lbx1FS is unable to cooperate with Phox2b. Thus, our analyses on Lbx1FS (dys)function reveals an unusual pathomechanism; that is, a mutation that selectively interferes with the ability of Lbx1 to cooperate with Phox2b, and thus impairs the development of a small subpopulation of neurons essential for respiratory control.


Asunto(s)
Mutación del Sistema de Lectura , Proteínas de Homeodominio/genética , Hipoventilación/congénito , Proteínas Musculares/fisiología , Neuronas/patología , Apnea Central del Sueño/etiología , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Hipoventilación/etiología , Hipoventilación/metabolismo , Hipoventilación/patología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Linaje , Respiración , Apnea Central del Sueño/metabolismo , Apnea Central del Sueño/patología , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
16.
J Neurosci ; 39(45): 9013-9027, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31527119

RESUMEN

Cleavage of amyloid precursor protein (APP) by ß-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-ß peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1-/- mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs). Immunohistochemistry revealed aberrant synaptic organization in the cochlea and hypomyelination of auditory nerve fibers as predominant neuropathological substrates of hearing loss in BACE1-/- mice. In particular, we found that fibers of spiral ganglion neurons (SGN) close to the organ of Corti are disorganized and abnormally swollen. BACE1 deficiency also engenders organization defects in the postsynaptic compartment of SGN fibers with ectopic overexpression of PSD95 far outside the synaptic region. During postnatal development, auditory fiber myelination in BACE1-/- mice lags behind dramatically and remains incomplete into adulthood. We relate the marked hypomyelination to the impaired processing of Neuregulin-1 when BACE1 is absent. To determine whether the cochlea of adult wild-type mice is susceptible to AD treatment-like suppression of BACE1, we administered the established BACE1 inhibitor NB-360 for 6 weeks. The drug suppressed BACE1 activity in the brain, but did not impair hearing performance and, upon neuropathological examination, did not produce the characteristic cochlear abnormalities of BACE1-/- mice. Together, these data strongly suggest that the hearing loss of BACE1 knock-out mice represents a developmental phenotype.SIGNIFICANCE STATEMENT Given its crucial role in the pathogenesis of Alzheimer's disease (AD), BACE1 is a prime pharmacological target for AD prevention and therapy. However, the safe and long-term administration of BACE1-inhibitors as envisioned in AD requires a comprehensive understanding of the various physiological functions of BACE1. Here, we report that BACE1 is essential for the processing of auditory signals in the inner ear, as BACE1-deficient mice exhibit significant hearing loss. We relate this deficit to impaired myelination and aberrant synapse formation in the cochlea, which manifest during postnatal development. By contrast, prolonged pharmacological suppression of BACE1 activity in adult wild-type mice did not reproduce the hearing deficit or the cochlear abnormalities of BACE1 null mice.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Cóclea/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Cóclea/fisiología , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neurregulina-1/genética , Neurregulina-1/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/fisiología
17.
J Biol Chem ; 294(39): 14185-14200, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31350336

RESUMEN

Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.


Asunto(s)
Errores Innatos del Metabolismo/genética , Mutación Missense , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/biosíntesis , Animales , Sitios de Unión , Encéfalo/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Unión Proteica , Estabilidad Proteica , Proteolisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Selenocisteína/metabolismo
18.
Development ; 144(15): 2737-2747, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694257

RESUMEN

Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
Proc Natl Acad Sci U S A ; 114(45): 11980-11985, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078343

RESUMEN

Most of the enteric nervous system derives from the "vagal" neural crest, lying at the level of somites 1-7, which invades the digestive tract rostro-caudally from the foregut to the hindgut. Little is known about the initial phase of this colonization, which brings enteric precursors into the foregut. Here we show that the "vagal crest" subsumes two populations of enteric precursors with contrasted origins, initial modes of migration, and destinations. Crest cells adjacent to somites 1 and 2 produce Schwann cell precursors that colonize the vagus nerve, which in turn guides them into the esophagus and stomach. Crest cells adjacent to somites 3-7 belong to the crest streams contributing to sympathetic chains: they migrate ventrally, seed the sympathetic chains, and colonize the entire digestive tract thence. Accordingly, enteric ganglia, like sympathetic ones, are atrophic when deprived of signaling through the tyrosine kinase receptor ErbB3, while half of the esophageal ganglia require, like parasympathetic ones, the nerve-associated form of the ErbB3 ligand, Neuregulin-1. These dependencies might bear relevance to Hirschsprung disease, with which alleles of Neuregulin-1 are associated.


Asunto(s)
Sistema Nervioso Entérico/citología , Ganglios Simpáticos/citología , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Neurregulina-1/genética , Receptor ErbB-3/genética , Células de Schwann/citología , Animales , Embrión de Pollo , Tracto Gastrointestinal/inervación , Enfermedad de Hirschsprung/genética , Ratones , Neurregulina-1/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Receptor ErbB-3/metabolismo , Nervio Vago/citología
20.
Proc Natl Acad Sci U S A ; 114(30): 8095-8100, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698373

RESUMEN

Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.


Asunto(s)
Núcleo Solitario/fisiología , Vocalización Animal/fisiología , Animales , Animales Recién Nacidos , Femenino , Músculos Laríngeos/fisiología , Conducta Materna , Ratones , Neuronas Motoras/fisiología , Embarazo , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA