Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 213: 112404, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35151043

RESUMEN

The aim of this study was to obtain stable star polymer layers with incorporated silver nanoparticles (AgNPs) and to study the antimicrobial activity of these hybrid materials. In this work, a novel approach regarding the synthesis of AgNPs directly by the star polymer layer is presented. Nanolayers of poly(N,N'-dimethylaminoethyl methacrylate) and hydroxyl-bearing poly[oligo(ethylene glycol) methacrylate] (P(DMAEMA-co-OEGMA-OH)) stars, covalently bound with solid supports, were obtained through chemical reaction of hydroxyl groups in the star arms with substrate modified with imidazole derivative. Quantitative chemical composition analysis and tracking of the changes in the morphology and wettability after every step of surface modification confirmed the covalent attachment of stars with the support. In the next step, the polymer nanolayers were modified with AgNPs formed in situ using only amine groups of the star arms and followed by the crystal quartz microbalance (QCM). The analysis of the layer thickness and affinity to water, both with the shape, size and amount of silver incorporated into the layer, confirmed the efficacy of AgNPs formation. The amount of silver incorporated into layers was correlated with the molar masses of the grafted stars, and a possible location of AgNPs within layers was shown. The antibacterial activity tests of prepared nanolayers showed that obtained hybrid materials were highly effective against both gram-positive and gram-negative bacteria strains. This study shows that the obtained layers are promising as stable coatings for antibacterial applications.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Nanopartículas del Metal/química , Metacrilatos/farmacología , Pruebas de Sensibilidad Microbiana , Polímeros/farmacología , Plata/química , Plata/farmacología
2.
Pharmaceutics ; 14(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559328

RESUMEN

Prostate cancer is the second most common cancer in males. In the case of locally advanced prostate cancer radical prostatectomy is one of the first-line therapy. However, recurrence after resection of the tumor can appear. Drug-eluting bioresorbable implants acting locally in the area of the tumor or the resection margins, that reduce the risk of recurrence would be advantageous. Electrospinning offers many benefits in terms of local delivery so fiber-forming polyesters and polyestercarbonates which are suitable to be drug-loaded were used in the study to obtain CTX or DTX-loaded electrospun patches for local delivery. After a fast verification step, patches based on the blend of poly(glycolide-ε-caprolactone) and poly(lactide-glycolide) as well as patches obtained with poly(lactide-glycolide- ε-caprolactone) were chosen for long-term study. After three months, 60% of the drug was released from (PGCL/PLGA) + CTX and it was selected for final, anticancer activity analysis with the use of PC-3 and DU145 cells to establish its therapeutic potential. CTX-loaded patches reduced cell growth to 53% and 31% respectively, as compared to drug-free patches. Extracts from drug-free patches showed excellent biocompatibility with the PC-3 cell line. Cabazitaxel-loaded bioresorbable patches are a promising drug delivery system for prostate cancer therapy.

3.
Polymers (Basel) ; 12(2)2020 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-32024273

RESUMEN

Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.

4.
Materials (Basel) ; 13(12)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545841

RESUMEN

In this work, we studied the stability of matrices with temperature-dependent solubility and their interactions with water at physiological temperature for their application in cell culture in vitro. Gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)) were used to prepare the matrices. The comonomer ratio during polymerization was chosen such that the cloud point temperature (TCP) of the copolymer was below 37 °C while the glass transition (Tg) was above 37 °C. The role of the support for matrices in the context of their stability in aqueous solution was examined. Therefore, matrices in the form of both self-supported bulk polymer materials (fibrillar mats and molds) and polymer films supported on the silica slides were examined. All of the matrices remained undissolved when incubated in water at a temperature above TCP. For the self-supported mats and molds, we observed the loss of shape stability, but, in the case of films supported on silica slides, only slight changes in morphology were observed. For a more in-depth investigation of the origin of the shape deformation of self-supported matrices, we analyzed the wettability, thickness, and water uptake of films on silica support because the matrices remained undeformed under these conditions. It was found that, above the TCP of P(iPrOx-nPrOx), the wettability of the films decreased, but at the same time the films absorbed water and swelled. We examined how this specific behavior of the supported films influenced the culture of fibroblasts. The temperature-dependent solubility of the matrices and the possibility of noninvasive cell separation were also examined.

5.
Eur J Dermatol ; 29(2): 126-140, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010797

RESUMEN

The treatment of difficult-to-treat wounds can be challenging. Although a number of approaches have been investigated, the healing process may be slow and unsatisfactory. An alternative approach is the use of a continuous sheet of skin cells applied over a wound which may improve cell implantation and patient recovery. To analyse the gene expression profile of fibroblast/keratinocyte co-culture on poly(tri[ethylene glycol] ethyl ether methacrylate) (P[TEGMA-EE]), a thermoresponsive biocompatible surface. Cultures were grown for 72 hours as a continuous layer on P(TEGMA-EE). Assays for genotoxicity, cell morphology, and fluorescence-assisted flow cytometry were performed to exclude adverse effects. A gene expression profile related to the extracellular matrix was investigated by microarray analysis. For fibroblast monocultures and fibroblast/keratinocyte co-cultures maintained for 72 hours on P(TEGMA-EE), no change in morphology or specific surface markers, or DNA damage (comet assay) was observed, relative to control surface. Moreover, no detrimental impact was ascertained based on microarray analysis. In response to lowered temperature, the detachment of a continuous cell layer sheet from the thermoresponsive surface was observed. When gene expression was compared between fibroblasts cultured alone and co-cultured with keratinocytes on P(TEGMA-EE), 10 genes were shown to be differentially expressed. Of these genes, six were significantly differentially expressed between cultures grown on P(TEGMA-EE) and human skin samples. Our results indicate that P(TEGMA-EE) is fully biocompatible and is therefore a suitable surface for successful preparation and recovery of two-layered fibroblast/keratinocyte co-culture as a continuous sheet of cells.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos/citología , Queratinocitos/citología , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/farmacología , Piel/citología , Células Cultivadas , Ensayo Cometa , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA