Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Phys Med Rehabil ; 100(7): 1201-1217, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30902630

RESUMEN

OBJECTIVE: To demonstrate naturalistic motor control speed, coordinated grasp, and carryover from trained to novel objects by an individual with tetraplegia using a brain-computer interface (BCI)-controlled neuroprosthetic. DESIGN: Phase I trial for an intracortical BCI integrated with forearm functional electrical stimulation (FES). Data reported span postimplant days 137 to 1478. SETTING: Tertiary care outpatient rehabilitation center. PARTICIPANT: A 27-year-old man with C5 class A (on the American Spinal Injury Association Impairment Scale) traumatic spinal cord injury INTERVENTIONS: After array implantation in his left (dominant) motor cortex, the participant trained with BCI-FES to control dynamic, coordinated forearm, wrist, and hand movements. MAIN OUTCOME MEASURES: Performance on standardized tests of arm motor ability (Graded Redefined Assessment of Strength, Sensibility, and Prehension [GRASSP], Action Research Arm Test [ARAT], Grasp and Release Test [GRT], Box and Block Test), grip myometry, and functional activity measures (Capabilities of Upper Extremity Test [CUE-T], Quadriplegia Index of Function-Short Form [QIF-SF], Spinal Cord Independence Measure-Self-Report [SCIM-SR]) with and without the BCI-FES. RESULTS: With BCI-FES, scores improved from baseline on the following: Grip force (2.9 kg); ARAT cup, cylinders, ball, bar, and blocks; GRT can, fork, peg, weight, and tape; GRASSP strength and prehension (unscrewing lids, pouring from a bottle, transferring pegs); and CUE-T wrist and hand skills. QIF-SF and SCIM-SR eating, grooming, and toileting activities were expected to improve with home use of BCI-FES. Pincer grips and mobility were unaffected. BCI-FES grip skills enabled the participant to play an adapted "Battleship" game and manipulate household objects. CONCLUSIONS: Using BCI-FES, the participant performed skillful and coordinated grasps and made clinically significant gains in tests of upper limb function. Practice generalized from training objects to household items and leisure activities. Motor ability improved for palmar, lateral, and tip-to-tip grips. The expects eventual home use to confer greater independence for activities of daily living, consistent with observed neurologic level gains from C5-6 to C7-T1. This marks a critical translational step toward clinical viability for BCI neuroprosthetics.


Asunto(s)
Interfaces Cerebro-Computador , Terapia por Estimulación Eléctrica , Antebrazo/fisiopatología , Fuerza de la Mano/fisiología , Cuadriplejía/rehabilitación , Adulto , Humanos , Masculino , Cuadriplejía/fisiopatología
2.
Front Neurosci ; 12: 208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670506

RESUMEN

Individuals with tetraplegia identify restoration of hand function as a critical, unmet need to regain their independence and improve quality of life. Brain-Computer Interface (BCI)-controlled Functional Electrical Stimulation (FES) technology addresses this need by reconnecting the brain with paralyzed limbs to restore function. In this study, we quantified performance of an intuitive, cortically-controlled, transcutaneous FES system on standardized object manipulation tasks from the Grasp and Release Test (GRT). We found that a tetraplegic individual could use the system to control up to seven functional hand movements, each with >95% individual accuracy. He was able to select one movement from the possible seven movements available to him and use it to appropriately manipulate all GRT objects in real-time using naturalistic grasps. With the use of the system, the participant not only improved his GRT performance over his baseline, demonstrating an increase in number of transfers for all objects except the Block, but also significantly improved transfer times for the heaviest objects (videocassette (VHS), Can). Analysis of underlying motor cortex neural representations associated with the hand grasp states revealed an overlap or non-separability in neural activation patterns for similarly shaped objects that affected BCI-FES performance. These results suggest that motor cortex neural representations for functional grips are likely more related to hand shape and force required to hold objects, rather than to the objects themselves. These results, demonstrating multiple, naturalistic functional hand movements with the BCI-FES, constitute a further step toward translating BCI-FES technologies from research devices to clinical neuroprosthetics.

3.
Sci Rep ; 6: 33807, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27658585

RESUMEN

Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

4.
Neuropsychology ; 25(5): 622-33, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21534685

RESUMEN

OBJECTIVE: Deficits in visual perception and working memory are commonly observed in neuropsychiatric disorders and have been investigated using functional MRI (fMRI). However, interpretation of differences in brain activation may be confounded with differences in task performance between groups. Differences in task difficulty across conditions may also pose interpretative issues in studies of visual processing in healthy subjects. METHOD: To address these concerns, the present study characterized brain activation in tasks that were psychometrically matched for difficulty; fMRI was used to assess brain activation in 10 healthy subjects during discrimination and working memory judgments for static and moving stimuli. For all task conditions, performance accuracy was matched at 70.7%. RESULTS: Areas associated with V2 and V5 in the dorsal stream were activated during motion processing tasks and V4 in the ventral stream were activated during form processing tasks. Frontoparietal areas associated with working memory were also statistically significant during the working memory tasks. CONCLUSIONS: Application of psychophysical methods to equate task demands provides a practical method to equate performance levels across conditions in fMRI studies and to compare healthy and cognitively impaired groups at comparable levels of effort. These psychometrically matched tasks can be applied to patients with a variety of cognitive disorders to investigate dysfunction of multiple a priori defined brain regions. Measuring the changes in typical activation patterns in patients with these diseases can be useful for monitoring disease progression, evaluating new drug treatments, and possibly for developing methods for early diagnosis.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Percepción de Forma/fisiología , Percepción de Movimiento/fisiología , Vías Nerviosas/fisiología , Adulto , Discriminación en Psicología/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Psicometría , Valores de Referencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA