Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Blood ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905634

RESUMEN

Neutrophils are the first line of defense against invading pathogens. Neutrophils execute and modulate immune responses by generating reactive oxygen species (ROS). Chronic Granulomatous Disease (CGD) is a primary immune deficiency disorder of phagocytes, caused by inherited mutations in the genes of the NADPH oxidase enzyme. These mutations lead to failure of ROS generation followed by recurrent bacterial and fungal infections, frequently associated with hyper-inflammatory manifestations. We report a multi-center cumulative experience in diagnosing and treating patients with CGD. From 1986 to 2021, 2,918 patients suffering from frequent infections were referred for neutrophil evaluation. Among them, 110 patients were diagnosed with CGD, 56 of Jewish ancestry, 48 of Arabic ancestry and 6 non-Jewish/non-Arabic. As opposed to other Western countries, the autosomal recessive (AR) CGD subtypes were predominant in Israel (71/110 patients). Thirty-nine patients had X-linked CGD, in most patients associated with severe infections (clinical severity score ≥3) and poor outcomes, presenting at a significantly earlier age than AR-CGD subtypes. The full spectrum of infections and hyper-inflammatory manifestations are described. Six patients had hypomorphic mutations with significantly milder phenotype, clinical severity score ≤2, and better outcomes. Hematopoietic stem cell transplantation was implemented in 39/110 patients (35.5%). Successful engraftment was achieved in 92%, with 82% long-term survival and 71% full clinical recovery. CGD is a complex disorder requiring a multi-professional team. Early identification of the genetic mutation is essential for prompt diagnosis, suitable management and prevention.

2.
Heredity (Edinb) ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982296

RESUMEN

Chromosome substitution lines (CSLs) are tentatively supreme resources to investigate non-allelic genetic interactions. However, the difficulty of generating such lines in most species largely yielded imperfect CSL panels, prohibiting a systematic dissection of epistasis. Here, we present the development and use of a unique and complete panel of CSLs in Arabidopsis thaliana, allowing the full factorial analysis of epistatic interactions. A first comparison of reciprocal single chromosome substitutions revealed a dependency of QTL detection on different genetic backgrounds. The subsequent analysis of the complete panel of CSLs enabled the mapping of the genetic interactors and identified multiple two- and three-way interactions for different traits. Some of the detected epistatic effects were as large as any observed main effect, illustrating the impact of epistasis on quantitative trait variation. We, therefore, have demonstrated the high power of detection and mapping of genome-wide epistasis, confirming the assumed supremacy of comprehensive CSL sets.

3.
Blood Cells Mol Dis ; 99: 102726, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696755

RESUMEN

Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the ß subunit (CD18) of the ß2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed ß integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of ß integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.


Asunto(s)
Síndrome de Deficiencia de Adhesión del Leucocito , Humanos , Adhesión Celular/genética , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Antígenos CD18/genética , Antígenos CD18/metabolismo , Leucocitos , Mutación
4.
Bioinformatics ; 38(22): 5134-5136, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36193999

RESUMEN

MOTIVATION: Multi-parent populations (MPPs) are popular for QTL mapping because they combine wide genetic diversity in parents with easy control of population structure, but a limited number of software tools for QTL mapping are specifically developed for general MPP designs. RESULTS: We developed an R package called statgenMPP, adopting a unified identity-by-descent (IBD)-based mixed model approach for QTL analysis in MPPs. The package offers easy-to-use functionalities of IBD calculations, mixed model solutions and visualizations for QTL mapping in a wide range of MPP designs, including diallele, nested-association mapping populations, multi-parent advanced genetic inter-cross populations and other complicated MPPs with known crossing schemes. AVAILABILITY AND IMPLEMENTATION: The R package statgenMPP is open-source and freely available on CRAN at https://CRAN.R-project.org/package=statgenMPP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Mapeo Cromosómico
5.
Blood ; 135(24): 2171-2181, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32128589

RESUMEN

Megakaryoblastic leukemia 1 (MKL1) promotes the regulation of essential cell processes, including actin cytoskeletal dynamics, by coactivating serum response factor. Recently, the first human with MKL1 deficiency, leading to a novel primary immunodeficiency, was identified. We report a second family with 2 siblings with a homozygous frameshift mutation in MKL1. The index case died as an infant from progressive and severe pneumonia caused by Pseudomonas aeruginosa and poor wound healing. The younger sibling was preemptively transplanted shortly after birth. The immunodeficiency was marked by a pronounced actin polymerization defect and a strongly reduced motility and chemotactic response by MKL1-deficient neutrophils. In addition to the lack of MKL1, subsequent proteomic and transcriptomic analyses of patient neutrophils revealed actin and several actin-related proteins to be downregulated, confirming a role for MKL1 as a transcriptional coregulator. Degranulation was enhanced upon suboptimal neutrophil activation, whereas production of reactive oxygen species was normal. Neutrophil adhesion was intact but without proper spreading. The latter could explain the observed failure in firm adherence and transendothelial migration under flow conditions. No apparent defect in phagocytosis or bacterial killing was found. Also, monocyte-derived macrophages showed intact phagocytosis, and lymphocyte counts and proliferative capacity were normal. Nonhematopoietic primary fibroblasts demonstrated defective differentiation into myofibroblasts but normal migration and F-actin content, most likely as a result of compensatory mechanisms of MKL2, which is not expressed in neutrophils. Our findings extend current insight into the severe immune dysfunction in MKL1 deficiency, with cytoskeletal dysfunction and defective extravasation of neutrophils as the most prominent features.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Mutación del Sistema de Lectura , Neutrófilos/fisiología , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Citoesqueleto de Actina/química , Movimiento Celular/genética , Movimiento Celular/fisiología , Consanguinidad , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Masculino , Linaje , Polimerizacion , Enfermedades de Inmunodeficiencia Primaria/terapia , Proteómica , Factores de Transcripción/metabolismo
6.
Theor Appl Genet ; 135(6): 2059-2082, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35524815

RESUMEN

KEY MESSAGE: We evaluate self-organizing maps (SOM) to identify adaptation zones and visualize multi-environment genotypic responses. We apply SOM to multiple traits and crop growth model output of large-scale European sunflower data. Genotype-by-environment interactions (G × E) complicate the selection of well-adapted varieties. A possible solution is to group trial locations into adaptation zones with G × E occurring mainly between zones. By selecting for good performance inside those zones, response to selection is increased. In this paper, we present a two-step procedure to identify adaptation zones that starts from a self-organizing map (SOM). In the SOM, trials across locations and years are assigned to groups, called units, that are organized on a two-dimensional grid. Units that are further apart contain more distinct trials. In an iterative process of reweighting trial contributions to units, the grid configuration is learnt simultaneously with the trial assignment to units. An aggregation of the units in the SOM by hierarchical clustering then produces environment types, i.e. trials with similar growing conditions. Adaptation zones can subsequently be identified by grouping trial locations with similar distributions of environment types across years. For the construction of SOMs, multiple data types can be combined. We compared environment types and adaptation zones obtained for European sunflower from quantitative traits like yield, oil content, phenology and disease scores with those obtained from environmental indices calculated with the crop growth model Sunflo. We also show how results are affected by input data organization and user-defined weights for genotypes and traits. Adaptation zones for European sunflower as identified by our SOM-based strategy captured substantial genotype-by-location interaction and pointed to trials in Spain, Turkey and South Bulgaria as inducing different genotypic responses.


Asunto(s)
Helianthus , Adaptación Fisiológica , Algoritmos , Análisis por Conglomerados , Genotipo , Helianthus/genética
7.
Biom J ; 64(5): 835-857, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35692062

RESUMEN

Large agricultural field trials may display irregular spatial trends that cannot be fully captured by a purely randomization-based analysis. For this reason, paralleling the development of analysis-of-variance procedures for randomized field trials, there is a long history of spatial modeling for field trials, starting with the early work of Papadakis on nearest neighbor analysis, which can be cast in terms of first or second differences among neighboring plot values. This kind of spatial modeling is amenable to a natural extension using splines, as has been demonstrated in recent publications in the field. Here, we consider the P-spline framework, focusing on model options that are easy to implement in linear mixed model packages. Two examples serve to illustrate and evaluate the methods. A key conclusion is that first differences are rather competitive with second differences. A further key observation is that second differences require special attention regarding the representation of the null space of the smooth terms for spatial interaction, and that an unstructured variance-covariance structure is required to ensure invariance to translation and rotation of eigenvectors associated with that null space. We develop a strategy that permits fitting this model with ease, but the approach is more demanding than that needed for fitting models using first differences. Hence, even though in other areas, second differences are very commonly used in the application of P-splines, our conclusion is that with field trials, first differences have advantages for routine use.


Asunto(s)
Fitomejoramiento , Modelos Lineales , Análisis Espacial
8.
J Clin Immunol ; 41(5): 992-1003, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33629196

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD), one of the phagocytic system defects, is the primary immunodeficiency caused by dysfunction of the NADPH oxidase complex which generates reactive oxygen species (ROS), which are essential for killing pathogenic microorganisms, especially catalase-positive bacteria and fungi. OBJECTIVE: The objective of our study was to assess the clinical and laboratory characteristics, treatment modalities, and prognosis of patients with CGD. METHODS: We retrospectively reviewed 63 patients with CGD who have been diagnosed, treated, and/or followed-up between 1984 and 2018 in Hacettepe University, Ankara, in Turkey, as a developing country. RESULTS: The number of female and male patients was 26/37. The median age at diagnosis was 3.8 (IQR: 1.0-9.6) years. The rate of consanguinity was 63.5%. The most common physical examination finding was lymphadenopathy (44/63), growth retardation (33/63), and hepatomegaly (27/63). One adult patient had squamous cell carcinoma of the lung. The most common infections were lung infection (53/63), skin abscess (43/63), and lymphadenitis (19/63). Of the 63 patients with CGD, 6 patients had inflammatory bowel disease (IBD). Twelve of the 63 patients died during follow-up. CYBA, NCF1, CYBB, and NCF2 mutations were detected in 35%, 27.5%, 25%, and 12.5% of the patients, respectively. CONCLUSION: We identified 63 patients with CGD from a single center in Turkey. Unlike other cohort studies in Turkey, due to the high consanguineous marriage rate in our study group, AR form of CGD was more frequent, and gastrointestinal involvement were found at relatively lower rates. The rate of patients who treated with HSCT was lower in our research than in the literature. A majority of the patients in this study received conventional prophylactic therapies, which highlight on the outcome of individuals who have not undergone HSCT.


Asunto(s)
Enfermedad Granulomatosa Crónica/diagnóstico , Adolescente , Adulto , Consanguinidad , Femenino , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/inmunología , Enfermedad Granulomatosa Crónica/terapia , Humanos , Masculino , Mutación , NADPH Oxidasas/genética , Estudios Retrospectivos , Turquía , Adulto Joven
9.
Blood Cells Mol Dis ; 92: 102596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547651

RESUMEN

Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe, recurrent bacterial and fungal infections. The disease is caused by mutations in the genes encoding the components of the leukocyte NADPH oxidase. This enzyme produces superoxide, which is subsequently metabolized to hydrogen peroxide and other reactive oxygen species (ROS). These products are essential for intracellular killing of pathogens by phagocytic leukocytes (neutrophils, eosinophils, monocytes and macrophages). The leukocyte NADPH oxidase is composed of five subunits, four of which are encoded by autosomal genes. These are CYBA, encoding p22phox, NCF1, encoding p47phox, NCF2, encoding p67phox and NCF4, encoding p40phox. This article lists all mutations identified in these genes in CGD patients. In addition, cytochrome b558 chaperone-1 (CYBC1), recently recognized as an essential chaperone protein for the expression of the X-linked NADPH oxidase component gp91phox (also called Nox2), is encoded by the autosomal gene CYBC1. Mutations in this gene also lead to CGD. Finally, RAC2, a small GTPase of the Rho family, is needed for activation of the NADPH oxidase, and mutations in the RAC2 gene therefore also induce CGD-like symptoms. Mutations in these last two genes are also listed in this article.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , Mutación , Humanos , NADPH Oxidasas/genética
10.
Blood Cells Mol Dis ; 90: 102587, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175765

RESUMEN

Chronic granulomatous disease (CGD) is an immunodeficiency disorder affecting about 1 in 250,000 individuals. CGD patients suffer from severe bacterial and fungal infections. The disease is caused by a lack of superoxide production by the leukocyte enzyme NADPH oxidase. Superoxide and subsequently formed other reactive oxygen species (ROS) are instrumental in killing phagocytosed micro-organisms in neutrophils, eosinophils, monocytes and macrophages. The leukocyte NADPH oxidase is composed of five subunits, of which the enzymatic component is gp91phox, also called Nox2. This protein is encoded by the CYBB gene on the X chromosome. Mutations in this gene are found in about 70% of all CGD patients in Europe and in about 20% in countries with a high ratio of parental consanguinity. This article lists all mutations identified in CYBB and should therefore help in genetic counseling of X-CGD patients' families. Moreover, apparently benign polymorphisms in CYBB are also given, which should facilitate the recognition of disease-causing mutations. In addition, we also include some mutations in G6PD, the gene on the X chromosome that encodes glucose-6-phosphate dehydrogenase, because inactivity of this enzyme may lead to shortage of NADPH and thus to insufficient activity of NADPH oxidase. Severe G6PD deficiency can induce CGD-like symptoms.


Asunto(s)
Cromosomas Humanos X/genética , Enfermedad Granulomatosa Crónica/genética , Mutación , NADPH Oxidasa 2/genética , Humanos
11.
J Exp Bot ; 72(2): 700-717, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33057698

RESUMEN

In wheat, temperature affects the timing and intensity of stem elongation. Genetic variation for this process is therefore important for adaptation. This study investigates the genetic response to temperature fluctuations during stem elongation and its relationship to phenology and height. Canopy height of 315 wheat genotypes (GABI wheat panel) was scanned twice weekly in the field phenotyping platform (FIP) of ETH Zurich using a LIDAR. Temperature response was modelled using linear regressions between stem elongation and mean temperature in each measurement interval. This led to a temperature-responsive (slope) and a temperature-irresponsive (intercept) component. The temperature response was highly heritable (H2=0.81) and positively related to a later start and end of stem elongation as well as final height. Genome-wide association mapping revealed three temperature-responsive and four temperature-irresponsive quantitative trait loci (QTLs). Furthermore, putative candidate genes for temperature-responsive QTLs were frequently related to the flowering pathway in Arabidopsis thaliana, whereas temperature-irresponsive QTLs corresponded to growth and reduced height genes. In combination with Rht and Ppd alleles, these loci, together with the loci for the timing of stem elongation, accounted for 71% of the variability in height. This demonstrates how high-throughput field phenotyping combined with environmental covariates can contribute to a smarter selection of climate-resilient crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Mapeo Cromosómico , Fenotipo , Temperatura , Triticum/genética
12.
Theor Appl Genet ; 134(11): 3643-3660, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34342658

RESUMEN

KEY MESSAGE: The identity-by-descent (IBD)-based mixed model approach introduced in this study can detect quantitative trait loci (QTLs) referring to the parental origin and simultaneously account for multilevel relatedness of individuals within and across families. This unified approach is proved to be a powerful approach for all kinds of multiparental population (MPP) designs. Multiparental populations (MPPs) have become popular for quantitative trait loci (QTL) detection. Tools for QTL mapping in MPPs are mostly developed for specific MPPs and do not generalize well to other MPPs. We present an IBD-based mixed model approach for QTL mapping in all kinds of MPP designs, e.g., diallel, Nested Association Mapping (NAM), and Multiparental Advanced Generation Intercross (MAGIC) designs. The first step is to compute identity-by-descent (IBD) probabilities using a general Hidden Markov model framework, called reconstructing ancestry blocks bit by bit (RABBIT). Next, functions of IBD information are used as design matrices, or genetic predictors, in a mixed model approach to estimate variance components for multiallelic genetic effects associated with parents. Family-specific residual genetic effects are added, and a polygenic effect is structured by kinship relations between individuals. Case studies of simulated diallel, NAM, and MAGIC designs proved that the advanced IBD-based multi-QTL mixed model approach incorporating both kinship relations and family-specific residual variances (IBD.MQMkin_F) is robust across a variety of MPP designs and allele segregation patterns in comparison to a widely used benchmark association mapping method, and in most cases, outperformed or behaved at least as well as other tools developed for specific MPP designs in terms of mapping power and resolution. Successful analyses of real data cases confirmed the wide applicability of our IBD-based mixed model methodology.


Asunto(s)
Mapeo Cromosómico , Modelos Genéticos , Sitios de Carácter Cuantitativo , Alelos , Simulación por Computador , Modelos Lineales , Cadenas de Markov , Plantas/genética
13.
Int Arch Allergy Immunol ; 181(7): 540-550, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32512560

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD) is a rare genetic disorder characterized by failure of phagocytic leukocytes to destroy certain microbes. We present a study on CGD patients enrolled at a single medical center concerning the infectious and noninfectious complications and genetic properties of the disease. METHODS: Icotinamide adenine dinucleotide phosphate oxidase activity and the expression of flavocytochrome b558 were measured by flow cytometry, and clinical outcomes of the patients were listed in relation to the genetic results. RESULTS: The clinical and genetic findings of 32 pediatric cases with CGD from 23 families were enrolled. Pneumonia and anemia were the most common infectious and noninfectious symptoms. Genetic analysis showed that 10 families (43.5%) carried CYBB variants and 13 families (56.5%) have autosomal recessive (AR) CGD, in which 6 families (26%) carried NCF1 variants, 4 (17.4%) carried CYBA variants, and 3 (13%) carried NCF2 variants. The median age of clinical onset was 3.3 and 48 months for patients with X-linked CGD (X-CGD) and AR-CGD, respectively. The onset of symptoms before age 1 year was 94% in X-CGD, 28.5% in AR-CGD, and 12.5% in patients with oxidase residual activity. Moreover, a de novo germline mutation at c.1415delG in CYBB (OMIM#300481) and a novel c.251_263del13bp in CYBA (OMIM#608508) were also investigated. CONCLUSIONS: Ihydrorhodamine-1,2,3 assay could not detect carrier mother in de novo case with CYBB variant. Most X-CGD patients have the onset of symptoms before age 1 year. Additionally, residual oxidase activity in AR-CGD causes a delay in onset, diagnosis, and prophylaxis. The protective role of residual activity is limited while the infection is ongoing and becoming serious.


Asunto(s)
Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Enfermedad Granulomatosa Crónica/complicaciones , Humanos , Lactante , Infecciones/etiología , Masculino , NADPH Oxidasa 2/genética , NADPH Oxidasas/deficiencia , NADPH Oxidasas/genética , Estudios Retrospectivos
14.
Br J Haematol ; 186(6): 887-899, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31168801

RESUMEN

Most sickle cell disease (SCD) patients rely on blood transfusion as their main treatment strategy. However, frequent blood transfusion poses the risk of alloimmunization. On average, 30% of SCD patients will alloimmunize while other patient groups form antibodies less frequently. Identification of genetic markers may help to predict which patients are at risk to form alloantibodies. The aim of this study was to evaluate whether genetic variations in the Toll-like receptor pathway or in genes previously associated with antibody-mediated conditions are associated with red blood cell (RBC) alloimmunization in a cohort of SCD patients. In this case-control study, cases had a documented history of alloimmunization while controls had received ≥20 RBC units without alloantibody formation. We used a customized single nucleotide polymorphism (SNP) panel to genotype 690 SNPs in 275 (130 controls, 145 cases) patients. Frequencies were compared using multiple logistic regression analysis. In our primary analysis, no SNPs were found to be significantly associated with alloimmunization after correction for multiple testing. However, in a secondary analysis with a less stringent threshold for significance we found 19 moderately associated SNPs. Among others, SNPs in TLR1/TANK and MALT1 were associated with a higher alloimmunization risk, while SNPs in STAM/IFNAR1 and STAT4 conferred a lower alloimmunization risk.


Asunto(s)
Anemia de Células Falciformes/genética , Genotipo , Polimorfismo de Nucleótido Simple , Reacción a la Transfusión/genética , Adulto , Anemia de Células Falciformes/inmunología , Anemia de Células Falciformes/terapia , Transfusión de Eritrocitos/efectos adversos , Femenino , Estudios de Seguimiento , Marcadores Genéticos , Humanos , Inmunización , Isoanticuerpos/inmunología , Masculino , Estudios Retrospectivos , Factores de Riesgo , Reacción a la Transfusión/inmunología
15.
Eur J Immunol ; 48(2): 344-354, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28952147

RESUMEN

The efficacy of cancer therapeutic antibodies varies considerably among patients. Anti-cancer antibodies act through different mechanisms, including antibody-dependent cellular cytotoxicity (ADCC) triggered via Fcγ receptors (FcγR). This phagocyte ADCC can be promoted by interference with CD47-SIRPα interactions, but the magnitude of this enhancement also varies among individuals. Both FcγR and SIRPα display considerable genetic variation, and we investigated whether this explains some of the variability in ADCC. Because of linkage disequilibrium between FcγR variants the interpretation of previous reports suggesting a potential link between FcγR polymorphisms and ADCC has been troublesome. We performed an integrated genetic analysis that enables stratification. ADCC by activated human neutrophils towards Trastuzumab-coated breast cancer cells was predominantly dependent on FcγRIIa. Neutrophils from individuals with the FcγRIIa-131H polymorphic variant displayed significantly higher killing capacity relative to those with FcγRIIa-131R. Furthermore, ADCC was consistently enhanced by targeting CD47-SIRPα interactions, and there were no significant functional differences between the two most prevalent SIRPα polymorphic variants. Thus, neutrophil ADCC capacity is directly related to the FcγRIIa polymorphism, and targeting CD47-SIRPα interactions enhances ADCC independently of FcγR and SIRPα genotype, thereby further suggesting that CD47-SIRPα interference might be a generic strategy for potentiating the efficacy of antibody therapy in cancer.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/genética , Antígenos de Diferenciación/genética , Neoplasias de la Mama/genética , Genotipo , Inmunoterapia/métodos , Neutrófilos/fisiología , Receptores de IgG/genética , Receptores Inmunológicos/genética , Antígenos de Diferenciación/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/inmunología , Antígeno CD47/metabolismo , Línea Celular Tumoral , Femenino , Predisposición Genética a la Enfermedad , Humanos , Desequilibrio de Ligamiento , Polimorfismo Genético , Receptor ErbB-2/inmunología , Receptores de IgG/metabolismo , Receptores Inmunológicos/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Resultado del Tratamiento
16.
Haematologica ; 104(10): 2091-2099, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630984

RESUMEN

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Asunto(s)
Complejo 3 de Proteína Adaptadora , Subunidades beta de Complejo de Proteína Adaptadora , Células Endoteliales , Exocitosis , Síndrome de Hermanski-Pudlak , Proteínas R-SNARE/metabolismo , Cuerpos de Weibel-Palade , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/genética , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Señalización del Calcio , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/patología , Humanos , Mutación , Transporte de Proteínas , Proteínas R-SNARE/genética , Cuerpos de Weibel-Palade/genética , Cuerpos de Weibel-Palade/metabolismo , Cuerpos de Weibel-Palade/patología
17.
J Pediatr Hematol Oncol ; 41(1): e3-e6, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29750748

RESUMEN

BACKGROUND AND AIM: Leukocyte adhesion deficiency type 1 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene. This gene encodes the CD18 subunit of ß2 integrin leukocyte adhesion cell molecules. Leukocyte adhesion deficiency type 1 is characterized by recurrent bacterial infections, impaired wound healing, inadequate pus formation, and delayed separation of the umbilical cord. MATERIALS AND METHODS: Blood samples were taken from 13 patients after written consent had been obtained. Genomic DNA was extracted, and ITGB2 exons and exon-intron boundaries were amplified by polymerase chain reaction. The products were examined by Sanger sequencing. RESULTS: In this study, 8 different previously reported mutations (intron7+1G>A, c.715G>A, c.1777 C>T, c.843del C, c.1768T>C, c.1821C>A, Intron7+1G>A, c.1885G>A) and 2 novel mutations (c.1821C>A; p.Tyr607Ter and c.1822C>T; p.Gln608Ter) were found. CONCLUSIONS: c.1821C>A (p.Tyr607Ter) and c.1822C>T (p.Gln608Ter) mutations should be included in the panel of carrier detection and prenatal diagnosis.


Asunto(s)
Antígenos CD18/genética , Pruebas Genéticas , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Mutación Missense , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Recién Nacido , Irán , Masculino , Estudios Retrospectivos
18.
J Med Genet ; 55(3): 166-172, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29331982

RESUMEN

BACKGROUND: Mutations in the NCF1 gene that encodes p47phox, a subunit of the NADPH oxidase complex, cause chronic granulomatous disease (CGD). In Kavkazi Jews, a c.579G>A (p.Trp193Ter) mutation in NCF1 is frequently found, leading to CGD. The same mutation is found in about 1% of Ashkenazi Jews, although Ashkenazi CGD patients with this mutation have never been described. METHODS: We used Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), gene scan analysis and Ion Torrent Next Generation Sequencing for genetic analysis, and measured NADPH oxidase activity and p47phox expression. RESULTS: In an Ashkenazi couple expecting a baby, both parents were found to be heterozygotes for this mutation, as was the fetus. However, segregation analysis in the extended family was consistent with the fetus inheriting both carrier alleles from the parents. MLPA indicated four complete NCF1 genes in the fetus and three in each parent. Gene sequencing confirmed these results. Analysis of fetal leucocytes obtained by cordocentesis revealed substantial oxidase activity with three different assays, which was confirmed after birth. In six additional Ashkenazi carriers of the NCF1 c.579G>A mutation, we found five individuals with three complete NCF1 genes of which one was mutated (like the parents), and one individual with in addition a fusion gene of NCF1 with a pseudogene. CONCLUSION: These results point to the existence of a 'false-carrier' state in Ashkenazi Jews and have wide implications regarding pre-pregnancy screening in this and other population groups.


Asunto(s)
Enfermedad Granulomatosa Crónica/genética , Heterocigoto , Judíos/genética , NADPH Oxidasas/genética , Alelos , Exones/genética , Femenino , Tamización de Portadores Genéticos , Pruebas Genéticas , Enfermedad Granulomatosa Crónica/patología , Humanos , Masculino , Mutación , Embarazo
19.
J Clin Immunol ; 38(8): 898-916, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30470980

RESUMEN

BACKGROUND: Chronic granulomatous disease (CGD) is characterized by mutation in any one of the five genes coding NADPH oxidase components that leads to functional abnormality preventing the killing of phagocytosed microbes by affecting the progression of a respiratory burst. CGD patients have an increased susceptibility to infections by opportunistic and pathogenic organisms. Though initial diagnosis of CGD using a nitroblue tetrazolium (NBT) test or dihydrorhodamine (DHR) test is relatively easy, molecular diagnosis is challenging due to involvement of multiple genes, presence of pseudogenes, large deletions, and GC-rich regions, among other factors. The strategies for molecular diagnosis vary depending on the affected gene and the mutation pattern prevalent in the target population. There is a paucity of molecular data related to CGD for Indian population. METHOD: This report includes data for a large cohort of CGD patients (n = 90) from India, describing the diagnostic approach, mutation spectrum, and novel mutations identified. We have used mosaicism in mothers and the expression pattern of different NADPH components by flow cytometry as a screening tool to identify the underlying affected gene. The techniques like Sanger sequencing, next-generation sequencing (NGS), and Genescan analysis were used for further molecular analysis. RESULT: Of the total molecularly characterized patients (n = 90), 56% of the patients had a mutation in the NCF1 gene, 30% had mutation in the CYBB gene, and 7% each had mutation in the CYBA and NCF2 genes. Among the patients with NCF1 gene mutation, 82% of the patients had 2-bp deletion (DelGT) mutations in the NCF1 gene. In our cohort, 41 different mutations including 9 novel mutations in the CYBB gene and 2 novel mutations each in the NCF2, CYBA, and NCF1 genes were identified. CONCLUSION: Substantial number of the patients lack NCF1 gene on both the alleles. This is often missed by advanced molecular techniques like Sanger sequencing and NGS due to the presence of pseudogenes and requires a simple Genescan method for confirmation. Thus, the diagnostic approach may depend on the prevalence of affected genes in respective population. This study identifies potential gene targets with the help of flow cytometric analysis of NADPH oxidase components to design an algorithm for diagnosis of CGD in India. In Indian population, the Genescan method should be preferred as the primary molecular test to rule out NCF1 gene mutations prior to Sanger sequencing and NGS.


Asunto(s)
Enfermedad Granulomatosa Crónica/diagnóstico , Mutación/genética , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , NADP/metabolismo , Patología Molecular/métodos , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Citometría de Flujo , Enfermedad Granulomatosa Crónica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , Lactante , Masculino , Nitroazul de Tetrazolio , Adulto Joven
20.
J Clin Immunol ; 38(2): 193-203, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29411231

RESUMEN

PURPOSE: Chronic granulomatous disease (CGD) is an innate immune deficiency disorder of phagocytes, resulting from mutations in the components of the NADPH oxidase complex that impair the synthesis of oxygen radicals, thus rendering patients susceptible to recurrent infections and excessive hyperinflammatory responses. The most common autosomal recessive form of CGD is p47phox deficiency, which is often clinically milder than the more common X-linked recessive form. Here, we report data on genetics, clinical and biochemical findings in 17 CGD patients of Kavkazi origin with the nonsense mutation c.579G>A in the NCF1 gene, leading to p47phox deficiency. METHODS: Diagnosis was based on detailed clinical evaluation, respiratory burst activity by cytochrome c reduction and dihydrorhodamine-1,2,3 (DHR) assay by flow cytometry, expression of p47phox by immunoblotting and molecular confirmation by DNA sequence analysis. RESULTS: Twelve male and five female patients with median age at onset of 2.5 years (range 1 day to 9 years) were included in the study. The present cohort displays an encouraging 88% overall long-term survival, with median follow-up of 17 years. Clinical manifestations varied from mild to severe expression of the disease. Correlation between genotype and phenotype is unpredictable, although the Kavkazi patients were more severely affected than other patients with p47phox deficiency. CONCLUSIONS: Kavkazi CGD patients harbor a common genetic mutation that is associated with a heterogeneous clinical phenotype. Early diagnosis and proper clinical management in an experienced phagocytic leukocyte center is imperative to ensure favorable patient outcome. New treatment strategies are ongoing, but results are not yet conclusive.


Asunto(s)
Variación Biológica Poblacional , Enfermedad Granulomatosa Crónica/epidemiología , Enfermedad Granulomatosa Crónica/genética , Mutación , NADPH Oxidasas/genética , Fenotipo , Edad de Inicio , Biomarcadores , Niño , Preescolar , Femenino , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/terapia , Humanos , Lactante , Recién Nacido , Israel/epidemiología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA