Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(7): 969-976, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38671159

RESUMEN

Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.


Asunto(s)
Microelectrodos , Nervios Periféricos , Animales , Ratas , Nervios Periféricos/fisiología , Nervio Ciático/fisiología , Ratas Sprague-Dawley , Técnicas Electroquímicas/métodos
2.
Adv Sci (Weinh) ; 11(18): e2308746, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429898

RESUMEN

The conversion of electrochemical processes into mechanical deformation in organic mixed ionic-electronic conductors (OMIECs) enables artificial muscle-like actuators but is also critical for degradation processes affecting OMIEC-based devices. To provide a microscopic understanding of electroactuation, the modulated electrochemical atomic force microscopy (mEC-AFM) is introduced here as a novel in-operando characterization method for electroactive materials. The technique enables multidimensional spectroscopic investigations of local electroactuation and charge uptake giving access to the electroactuation transfer function. For poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) based microelectrodes, the spectroscopic measurements are combined with multichannel mEC-AFM imaging, providing maps of local electroactuation amplitude and phase as well as surface morphology. The results demonstrate that the amplitude and timescales of electroactuation are governed by the drift motion of hydrated ions. Accordingly, slower water diffusion processes are not limiting, and the results illustrate how OMIEC microactuators can operate at sub-millisecond timescales.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38972069

RESUMEN

Understanding the dynamics of ion migration and volume change is crucial to studying the functionality and long-term stability of soft polymeric materials operating at liquid interfaces, but the subsurface characterization of swelling processes in these systems remains elusive. In this work, we address the issue using modulated electrochemical atomic force microscopy as a depth-sensitive technique to study electroswelling effects in the high-performance actuator material polypyrrole doped with dodecylbenzenesulfonate (Ppy:DBS). We perform multidimensional measurements combining local electroswelling and electrochemical impedance spectroscopies on microstructured Ppy:DBS actuators. We interpret charge accumulation in the polymeric matrix with a quantitative model, giving access to both the spatiotemporal dynamics of ion migration and the distribution of electroswelling in the electroactive polymer layer. The findings demonstrate a nonuniform distribution of the effective ionic volume in the Ppy:DBS layer depending on the film morphology and redox state. Our findings indicate that the highly efficient actuation performance of Ppy:DBS is caused by rearrangements of the polymer microstructure induced by charge accumulation in the soft polymeric matrix, increasing the effective ionic volume in the bulk of the electroactive film for up to two times the value measured in free water.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37966461

RESUMEN

The brain exhibits extraordinary information processing capabilities thanks to neural networks that can operate in parallel with minimal energy consumption. Memory and learning require the creation of new neural networks through the long-term modification of the structure of the synapses, a phenomenon called long-term plasticity. Here, we use an organic electrochemical transistor to simulate long-term potentiation and depotentiation processes. Similarly to what happens in a synapse, the polymerization of the 3,4-ethylenedioxythiophene (EDOT) on the gate electrode modifies the structure of the device and boosts the ability of the gate potential to modify the conductivity of the channel. Operando AFM measurements were carried out to demonstrate the correlation between neuromorphic behavior and modification of the gate electrode. Long-term enhancement depends on both the number of pulses used and the gate potential, which generates long-term potentiation when a threshold of +0.7 V is overcome. Long-term depotentiation occurs by applying a +3.0 V potential and exploits the overoxidation of the deposited PEDOT:PSS. The induced states are stable for at least 2 months. The developed device shows very interesting characteristics in the field of neuromorphic electronics.

5.
Polymers (Basel) ; 14(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35267844

RESUMEN

Oxygen depletion in confined spaces represents one of the most serious and underestimated dangers for workers. Despite the existence of several commercially available and widely used gas oxygen sensors, injuries and deaths from reduced oxygen levels are still more common than for other hazardous gases. Here, we present hydrogel-based organic electrochemical transistors (OECTs) made with the conducting polymer poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) as wearable and real-time oxygen gas sensors. After comparing OECT performances using liquid and hydrogel electrolytes, we identified the best PEDOT:PSS active layer and hydrogel coating (30 µm) combination for sensing oxygen in the concentration range of 13−21% (v/v), critical for work safety applications. The fast O2 solubilization in the hydrogel allowed for gaseous oxygen transduction in an electrical signal thanks to the electrocatalytic activity of PEDOT:PSS, while OECT architecture amplified the response (gain ~ 104). OECTs proved to have comparable sensitivities if fabricated on glass and thin plastic substrates, (−12.2 ± 0.6) and (−15.4 ± 0.4) µA/dec, respectively, with low power consumption (<40 µW). Sample bending does not influence the device response, demonstrating that our real-time conformable and lightweight sensor could be implemented as a wearable, noninvasive safety tool for operators working in potentially hazardous confined spaces.

6.
Nat Commun ; 13(1): 5423, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109508

RESUMEN

Research on electrolyte-gated and organic electrochemical transistor (OECT) architectures is motivated by the prospect of a highly biocompatible interface capable of amplifying bioelectronic signals at the site of detection. Despite many demonstrations in these directions, a quantitative model for OECTs as impedance biosensors is still lacking. We overcome this issue by introducing a model experiment where we simulate the detection of a single cell by the impedance sensing of a dielectric microparticle. The highly reproducible experiment allows us to study the impact of transistor geometry and operation conditions on device sensitivity. With the data we rationalize a mathematical model that provides clear guidelines for the optimization of OECTs as single cell sensors, and we verify the quantitative predictions in an in-vitro experiment. In the optimized geometry, the OECT-based impedance sensor allows to record single cell adhesion and detachment transients, showing a maximum gain of 20.2±0.9 dB with respect to a single electrode-based impedance sensor.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Técnicas Biosensibles/métodos , Impedancia Eléctrica , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA