Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 238, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566027

RESUMEN

BACKGROUND: The fruity aromatic bouquet of coffee has attracted recent interest to differentiate high value market produce as specialty coffee. Although the volatile compounds present in green and roasted coffee beans have been extensively described, no study has yet linked varietal molecular differences to the greater abundance of specific substances and support the aroma specificity of specialty coffees. RESULTS: This study compared four Arabica genotypes including one, Geisha Especial, suggested to generate specialty coffee. Formal sensory evaluations of coffee beverages stressed the importance of coffee genotype in aroma perception and that Geisha Especial-made coffee stood out by having fine fruity, and floral, aromas and a more balanced acidity. Comparative SPME-GC-MS analyses of green and roasted bean volatile compounds indicated that those of Geisha Especial differed by having greater amounts of limonene and 3-methylbutanoic acid in agreement with the coffee cup aroma perception. A search for gene ontology differences of ripening beans transcriptomes of the four varieties revealed that they differed by metabolic processes linked to terpene biosynthesis due to the greater gene expression of prenyl-pyrophosphate biosynthetic genes and terpene synthases. Only one terpene synthase (CaTPS10-like) had an expression pattern that paralleled limonene loss during the final stage of berry ripening and limonene content in the studied four varieties beans. Its functional expression in tobacco leaves confirmed its functioning as a limonene synthase. CONCLUSIONS: Taken together, these data indicate that coffee variety genotypic specificities may influence ripe berry chemotype and final coffee aroma unicity. For the specialty coffee variety Geisha Especial, greater expression of terpene biosynthetic genes including CaTPS10-like, a limonene synthase, resulted in the greater abundance of limonene in green beans, roasted beans and a unique citrus note of the coffee drink.


Asunto(s)
Transferasas Alquil y Aril , Coffea , Liasas Intramoleculares , Odorantes , Coffea/genética , Limoneno , Terpenos , Semillas , Perfilación de la Expresión Génica
2.
Angew Chem Int Ed Engl ; 54(6): 1744-8, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25538035

RESUMEN

Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98-99.9%) was developed. This transformation could be carried out in the presence of up to 20 g L(-1) olefin substrate with no loss in diastereo- and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme-bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene-transfer reactivity.


Asunto(s)
Alquenos/química , Ciclopropanos/química , Mioglobina/química , Catálisis , Proteínas Recombinantes/química , Estereoisomerismo
3.
Bioorg Med Chem ; 22(20): 5697-704, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24890656

RESUMEN

The direct conversion of aliphatic CH bonds into CN bonds provides an attractive approach to the introduction of nitrogen-containing functionalities in organic molecules. Following the recent discovery that cytochrome P450 enzymes can catalyze the cyclization of arylsulfonyl azide compounds via an intramolecular C(sp(3))H amination reaction, we have explored here the CH amination reactivity of other hemoproteins. Various heme-containing proteins, and in particular myoglobin and horseradish peroxidase, were found to be capable of catalyzing this transformation. Based on this finding, a series of engineered and artificial myoglobin variants containing active site mutations and non-native Mn- and Co-protoporphyrin IX cofactors, respectively, were prepared to investigate the effect of these structural changes on the catalytic activity and selectivity of these catalysts. Our studies showed that metallo-substituted myoglobins constitute viable CH amination catalysts, revealing a distinctive reactivity trend as compared to synthetic metalloporphyrin counterparts. On the other hand, amino acid substitutions at the level of the heme pocket were found to be beneficial toward improving the stereo- and enantioselectivity of these Mb-catalyzed reactions. Mechanistic studies involving kinetic isotope effect experiments indicate that CH bond cleavage is implicated in the rate-limiting step of myoglobin-catalyzed amination of arylsulfonyl azides. Altogether, these studies indicate that myoglobin constitutes a promising scaffold for the design and development of CH amination catalysts.


Asunto(s)
Azidas/metabolismo , Biocatálisis , Mioglobina/metabolismo , Compuestos Organometálicos/metabolismo , Ingeniería de Proteínas , Aminación , Animales , Azidas/química , Modelos Moleculares , Estructura Molecular , Mioglobina/química , Mioglobina/genética , Compuestos Organometálicos/química , Cachalote , Estereoisomerismo
4.
Appl Microbiol Biotechnol ; 98(14): 6275-83, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24687750

RESUMEN

We have recently described the biocatalytic characterization of a self-sufficent biosynthetic alkane hydroxylase based on CYP153A13a from Alcanivorax borkumensis SK2 (thereafter A13-Red). Despite remarkable regio- and chemo-selectivity, A13-Red suffers of a difficult-to-reproduce expression and moderate operational stability. In this study, we focused our efforts on the production of A13-Red using high-cell-density cultivation (HCDC) of recombinant Escherichia coli. We achieved 455 mg (5,000 nmol) of functional enzyme per liter of culture. Tight control of cultivation parameters rendered the whole process highly reproducible compared with flask cultivations. We optimized the purification of the biocatalyst that can be performed in either two or three steps depending on the application needed to afford A13-Red up to 95 % homogeneous. We investigated different reaction conditions and found that the total turnover numbers of A13-Red during the in vitro hydroxylation of n-octane could reach up to 3,250 to produce 1-octanol (1.6 mM) over a period of 78 h.


Asunto(s)
Alcanivoraceae/enzimología , Citocromo P-450 CYP4A/aislamiento & purificación , Citocromo P-450 CYP4A/metabolismo , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Octanos/metabolismo , Alcanivoraceae/genética , Citocromo P-450 CYP4A/genética , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
5.
J Agric Food Chem ; 71(11): 4665-4674, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36916533

RESUMEN

Postharvest processing of coffee has been shown to impact cup quality. Yeasts are known to modulate the sensory traits of the final cup of coffee after controlled fermentation at the farm. Here, we enumerated native coffee yeasts in a Nicaraguan farm during dry and semidry postharvest processing of Arabica and Robusta beans. Subsequently, 90 endogenous yeast strains were selected from the collected endogenous isolates, identified, and subjected to high-throughput fermentation and biovolatile generation in a model system mimicking postharvesting conditions. Untargeted volatile analysis by SPME-GC-MS enabled the identification of key aroma compounds generated by the yeast pool and demonstrated differences among strains. Several genera, including Pichia, Candida, and Hanseniaspora, showed both strain- and species-level variability in volatile generation and profiles. This fermentation platform and biovolatile database could represent a versatile opportunity to accelerate the development of yeast starter cultures for generating specific and desired sensory attributes in the final cup of coffee.


Asunto(s)
Pichia , Levaduras , Candida , Fermentación
6.
Angew Chem Int Ed Engl ; 51(43): 10712-23, 2012 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22996726

RESUMEN

Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal.

7.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35792875

RESUMEN

Genomic prediction has revolutionized crop breeding despite remaining issues of transferability of models to unseen environmental conditions and environments. Usage of endophenotypes rather than genomic markers leads to the possibility of building phenomic prediction models that can account, in part, for this challenge. Here, we compare and contrast genomic prediction and phenomic prediction models for 3 growth-related traits, namely, leaf count, tree height, and trunk diameter, from 2 coffee 3-way hybrid populations exposed to a series of treatment-inducing environmental conditions. The models are based on 7 different statistical methods built with genomic markers and ChlF data used as predictors. This comparative analysis demonstrates that the best-performing phenomic prediction models show higher predictability than the best genomic prediction models for the considered traits and environments in the vast majority of comparisons within 3-way hybrid populations. In addition, we show that phenomic prediction models are transferrable between conditions but to a lower extent between populations and we conclude that chlorophyll a fluorescence data can serve as alternative predictors in statistical models of coffee hybrid performance. Future directions will explore their combination with other endophenotypes to further improve the prediction of growth-related traits for crops.


Asunto(s)
Café , Fenómica , Clorofila A , Café/genética , Genoma de Planta , Genómica/métodos , Genotipo , Hibridación Genética , Modelos Genéticos , Fenotipo , Fitomejoramiento
8.
Metabolites ; 10(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993190

RESUMEN

Phenolic compounds are involved in plant response to environmental conditions and are highly present in leaves of Coffea arabica L., originally an understory shrub. To increase knowledge of C. arabica leaf phenolic compounds and their patterns in adaptation to light intensity, mature leaves of Ethiopian wild accessions, American pure lines and their relative F1 hybrids were sampled in full sun or under 50% shade field plots in Mexico and at two contrasting elevations in Nicaragua and Colombia. Twenty-one phenolic compounds were identified by LC-DAD-MS2 and sixteen were quantified by HPLC-DAD. Four of them appeared to be involved in C. arabica response to light intensity. They were consistently more accumulated in full sun, presenting a stable ratio of leaf content in the sun vs. shade for all the studied genotypes: 1.6 for 5-CQA, F-dihex and mangiferin and 2.8 for rutin. Moreover, 5-CQA and mangiferin contents, in full sun and shade, allowed for differentiating the two genetic groups of Ethiopian wild accessions (higher contents) vs. cultivated American pure lines. They appear, therefore, to be potential biomarkers of adaptation of C. arabica to light intensity for breeding programs. We hypothesize that low 5-CQA and mangiferin leaf contents should be searched for adaptation to full-sun cropping systems and high contents used for agroforestry systems.

9.
Front Plant Sci ; 10: 1344, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695719

RESUMEN

In the present paper, we evaluated the implementation of a seed production system based on the exploitation of male sterility on coffee. We studied specifically the combination between CIR-SM01 and Marsellesa® (a Sarchimor line), which provides a hybrid population called Starmaya. We demonstrated that the establishment of seed garden under natural pollination is possible and produces a sufficient amount of hybrid seeds to be multiplied efficiently and economically. As expected for F1 hybrid, the performances of Starmaya are highly superior to conventional cultivars. However, we observed some heterogeneity on Starmaya cultivar in the field. We confirmed by genetic marker analysis that the off-types were partly related to the heterozygosity of the CIR-SM01 clone and could not be modified. Regarding the level of rust resistance of Starmaya cv., we saw that it could be improved if Marsellesa was more fully fixed genetically. If so, we should be able to decrease significantly the percentage of rust incidence of Starmaya from 15 to 5%, which would be quite acceptable at a commercial level. Starmaya represents the proof of concept for the mass propagation of Arabica F1 hybrid seeds using male sterility. Finally, we discuss the possibility to increase the number of hybrid varieties produced by seed, exploring some initiatives to identify male sterility markers to induce male sterility on any conventional cultivar. This would definitively open up the universe of known Arabica cultivars to be used in breeding new F1 hybrids.

11.
ACS Catal ; 4(2): 546-552, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24634794

RESUMEN

The direct amination of aliphatic C-H bonds represents a most valuable transformation in organic chemistry. While a number of transition metal-based catalysts have been developed and investigated for this purpose, the possibility to execute this transformation with biological catalysts has remained largely unexplored. Here, we report that cytochrome P450 enzymes can serve as efficient catalysts for mediating intramolecular benzylic C-H amination reactions in a variety of arylsulfonyl azide compouds. Under optimized conditions, the P450 catalysts were found to support up to 390 total turnovers leading to the formation of the desired sultam products with excellent regioselectivity. In addition, the chiral environment provided by the enzyme active site allowed for the reaction to proceed in a stereo- and enantioselective manner. The C-H amination activity, substrate profile, and enantio/stereoselectivity of these catalysts could be modulated by utilizing enzyme variants with engineered active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA