Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 21(8): e3002251, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37607211

RESUMEN

Modern advances in DNA sequencing hold the promise of facilitating descriptions of new organisms at ever finer precision but have come with challenges as the major Codes of bionomenclature contain poorly defined requirements for species and subspecies diagnoses (henceforth, species diagnoses), which is particularly problematic for DNA-based taxonomy. We, the commissioners of the International Commission on Zoological Nomenclature, advocate a tightening of the definition of "species diagnosis" in future editions of Codes of bionomenclature, for example, through the introduction of requirements for specific information on the character states of differentiating traits in comparison with similar species. Such new provisions would enhance taxonomic standards and ensure that all diagnoses, including DNA-based ones, contain adequate taxonomic context. Our recommendations are intended to spur discussion among biologists, as broad community consensus is critical ahead of the implementation of new editions of the International Code of Zoological Nomenclature and other Codes of bionomenclature.


Asunto(s)
ADN , ADN/genética , Fenotipo , Análisis de Secuencia de ADN
2.
Syst Biol ; 72(5): 1084-1100, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37094905

RESUMEN

The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multispecies anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to: 1) use controlled vocabularies and create semiautomated computer-parsable insect morphological descriptions; 2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and 3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies.


Asunto(s)
Artrópodos , Animales , Filogenia , Insectos , Informática , Biodiversidad
3.
Am J Physiol Cell Physiol ; 310(8): C663-72, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26825123

RESUMEN

Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Contracción Isométrica/fisiología , Fibras Musculares de Contracción Rápida/fisiología , Receptor Activador del Factor Nuclear kappa-B/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Am J Pathol ; 185(4): 920-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25708645

RESUMEN

Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.


Asunto(s)
Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/prevención & control , Osteoprotegerina/metabolismo , Animales , Línea Celular , Fragmentos Fc de Inmunoglobulinas/metabolismo , Técnicas In Vitro , Inflamación/patología , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/patología , Músculos/fisiopatología , Distrofia Muscular Animal/fisiopatología
6.
BMC Evol Biol ; 14: 220, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25331733

RESUMEN

BACKGROUND: As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. RESULTS: Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. CONCLUSIONS: We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.


Asunto(s)
Escarabajos/genética , Animales , Biodiversidad , Evolución Biológica , Escarabajos/clasificación , Fósiles , Insectos/genética , Filogenia
7.
Antimicrob Agents Chemother ; 58(12): 7430-40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25267679

RESUMEN

Helicobacter pylori is motile by means of polar flagella, and this motility has been shown to play a critical role in pathogenicity. The major structural flagellin proteins have been shown to be glycosylated with the nonulosonate sugar, pseudaminic acid (Pse). This glycan is unique to microorganisms, and the process of flagellin glycosylation is required for H. pylori flagellar assembly and consequent motility. As such, the Pse biosynthetic pathway offers considerable potential as an antivirulence drug target, especially since motility is required for H. pylori colonization and persistence in the host. This report describes screening the five Pse biosynthetic enzymes for small-molecule inhibitors using both high-throughput screening (HTS) and in silico (virtual screening [VS]) approaches. Using a 100,000-compound library, 1,773 hits that exhibited a 40% threshold inhibition at a 10 µM concentration were identified by HTS. In addition, VS efforts using a 1.6-million compound library directed at two pathway enzymes identified 80 hits, 4 of which exhibited reasonable inhibition at a 10 µM concentration in vitro. Further secondary screening which identified 320 unique molecular structures or validated hits was performed. Following kinetic studies and structure-activity relationship (SAR) analysis of selected inhibitors from our refined list of 320 compounds, we demonstrated that three inhibitors with 50% inhibitory concentrations (IC50s) of approximately 14 µM, which belonged to a distinct chemical cluster, were able to penetrate the Gram-negative cell membrane and prevent formation of flagella.


Asunto(s)
Antibacterianos/farmacología , Flagelos/efectos de los fármacos , Flagelina/antagonistas & inhibidores , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/patogenicidad , Bibliotecas de Moléculas Pequeñas/farmacología , Azúcares Ácidos/metabolismo , Antibacterianos/química , Transporte Biológico , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular , Descubrimiento de Drogas , Flagelos/genética , Flagelos/metabolismo , Flagelina/biosíntesis , Flagelina/genética , Expresión Génica , Glicosilación/efectos de los fármacos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Movimiento/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Interfaz Usuario-Computador , Virulencia
8.
Zookeys ; 1194: 1-981, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523865

RESUMEN

More than 4700 nominal family-group names (including names for fossils and ichnotaxa) are nomenclaturally available in the order Coleoptera. Since each family-group name is based on the concept of its type genus, we argue that the stability of names used for the classification of beetles depends on accurate nomenclatural data for each type genus. Following a review of taxonomic literature, with a focus on works that potentially contain type species designations, we provide a synthesis of nomenclatural data associated with the type genus of each nomenclaturally available family-group name in Coleoptera. For each type genus the author(s), year of publication, and page number are given as well as its current status (i.e., whether treated as valid or not) and current classification. Information about the type species of each type genus and the type species fixation (i.e., fixed originally or subsequently, and if subsequently, by whom) is also given. The original spelling of the family-group name that is based on each type genus is included, with its author(s), year, and stem. We append a list of nomenclaturally available family-group names presented in a classification scheme. Because of the importance of the Principle of Priority in zoological nomenclature, we provide information on the date of publication of the references cited in this work, when known. Several nomenclatural issues emerged during the course of this work. We therefore appeal to the community of coleopterists to submit applications to the International Commission on Zoological Nomenclature (henceforth "Commission") in order to permanently resolve some of the problems outlined here. The following changes of authorship for type genera are implemented here (these changes do not affect the concept of each type genus): CHRYSOMELIDAE: Fulcidax Crotch, 1870 (previously credited to "Clavareau, 1913"); CICINDELIDAE: Euprosopus W.S. MacLeay, 1825 (previously credited to "Dejean, 1825"); COCCINELLIDAE: Alesia Reiche, 1848 (previously credited to "Mulsant, 1850"); CURCULIONIDAE: Arachnopus Boisduval, 1835 (previously credited to "Guérin-Méneville, 1838"); ELATERIDAE: Thylacosternus Gemminger, 1869 (previously credited to "Bonvouloir, 1871"); EUCNEMIDAE: Arrhipis Gemminger, 1869 (previously credited to "Bonvouloir, 1871"), Mesogenus Gemminger, 1869 (previously credited to "Bonvouloir, 1871"); LUCANIDAE: Sinodendron Hellwig, 1791 (previously credited to "Hellwig, 1792"); PASSALIDAE: Neleides Harold, 1868 (previously credited to "Kaup, 1869"), Neleus Harold, 1868 (previously credited to "Kaup, 1869"), Pertinax Harold, 1868 (previously credited to "Kaup, 1869"), Petrejus Harold, 1868 (previously credited to "Kaup, 1869"), Undulifer Harold, 1868 (previously credited to "Kaup, 1869"), Vatinius Harold, 1868 (previously credited to "Kaup, 1869"); PTINIDAE: Mezium Leach, 1819 (previously credited to "Curtis, 1828"); PYROCHROIDAE: Agnathus Germar, 1818 (previously credited to "Germar, 1825"); SCARABAEIDAE: Eucranium Dejean, 1833 (previously "Brullé, 1838"). The following changes of type species were implemented following the discovery of older type species fixations (these changes do not pose a threat to nomenclatural stability): BOLBOCERATIDAE: Bolbocerusbocchus Erichson, 1841 for Bolbelasmus Boucomont, 1911 (previously Bolbocerasgallicum Mulsant, 1842); BUPRESTIDAE: Stigmoderaguerinii Hope, 1843 for Neocuris Saunders, 1868 (previously Anthaxiafortnumi Hope, 1846), Stigmoderaperoni Laporte & Gory, 1837 for Curis Laporte & Gory, 1837 (previously Buprestiscaloptera Boisduval, 1835); CARABIDAE: Carabuselatus Fabricius, 1801 for Molops Bonelli, 1810 (previously Carabusterricola Herbst, 1784 sensu Fabricius, 1792); CERAMBYCIDAE: Prionuspalmatus Fabricius, 1792 for Macrotoma Audinet-Serville, 1832 (previously Prionusserripes Fabricius, 1781); CHRYSOMELIDAE: Donaciaequiseti Fabricius, 1798 for Haemonia Dejean, 1821 (previously Donaciazosterae Fabricius, 1801), Eumolpusruber Latreille, 1807 for Euryope Dalman, 1824 (previously Cryptocephalusrubrifrons Fabricius, 1787), Galerucaaffinis Paykull, 1799 for Psylliodes Latreille, 1829 (previously Chrysomelachrysocephala Linnaeus, 1758); COCCINELLIDAE: Dermestesrufus Herbst, 1783 for Coccidula Kugelann, 1798 (previously Chrysomelascutellata Herbst, 1783); CRYPTOPHAGIDAE: Ipscaricis G.-A. Olivier, 1790 for Telmatophilus Heer, 1841 (previously Cryptophagustyphae Fallén, 1802), Silphaevanescens Marsham, 1802 for Atomaria Stephens, 1829 (previously Dermestesnigripennis Paykull, 1798); CURCULIONIDAE: Bostrichuscinereus Herbst, 1794 for Crypturgus Erichson, 1836 (previously Bostrichuspusillus Gyllenhal, 1813); DERMESTIDAE: Dermestestrifasciatus Fabricius, 1787 for Attagenus Latreille, 1802 (previously Dermestespellio Linnaeus, 1758); ELATERIDAE: Elatersulcatus Fabricius, 1777 for Chalcolepidius Eschscholtz, 1829 (previously Chalcolepidiuszonatus Eschscholtz, 1829); ENDOMYCHIDAE: Endomychusrufitarsis Chevrolat, 1835 for Epipocus Chevrolat, 1836 (previously Endomychustibialis Guérin-Méneville, 1834); EROTYLIDAE: Ipshumeralis Fabricius, 1787 for Dacne Latreille, 1797 (previously Dermestesbipustulatus Thunberg, 1781); EUCNEMIDAE: Fornaxaustrocaledonicus Perroud & Montrouzier, 1865 for Mesogenus Gemminger, 1869 (previously Mesogenusmellyi Bonvouloir, 1871); GLAPHYRIDAE: Melolonthaserratulae Fabricius, 1792 for Glaphyrus Latreille, 1802 (previously Scarabaeusmaurus Linnaeus, 1758); HISTERIDAE: Histerstriatus Forster, 1771 for Onthophilus Leach, 1817 (previously Histersulcatus Moll, 1784); LAMPYRIDAE: Ototretafornicata E. Olivier, 1900 for Ototreta E. Olivier, 1900 (previously Ototretaweyersi E. Olivier, 1900); LUCANIDAE: Lucanuscancroides Fabricius, 1787 for Lissotes Westwood, 1855 (previously Lissotesmenalcas Westwood, 1855); MELANDRYIDAE: Nothusclavipes G.-A. Olivier, 1812 for Nothus G.-A. Olivier, 1812 (previously Nothuspraeustus G.-A. Olivier, 1812); MELYRIDAE: Lagriaater Fabricius, 1787 for Enicopus Stephens, 1830 (previously Dermesteshirtus Linnaeus, 1767); NITIDULIDAE: Sphaeridiumluteum Fabricius, 1787 for Cychramus Kugelann, 1794 (previously Strongylusquadripunctatus Herbst, 1792); OEDEMERIDAE: Helopslaevis Fabricius, 1787 for Ditylus Fischer, 1817 (previously Ditylushelopioides Fischer, 1817 [sic]); PHALACRIDAE: Sphaeridiumaeneum Fabricius, 1792 for Olibrus Erichson, 1845 (previously Sphaeridiumbicolor Fabricius, 1792); RHIPICERIDAE: Sandalusniger Knoch, 1801 for Sandalus Knoch, 1801 (previously Sandaluspetrophya Knoch, 1801); SCARABAEIDAE: Cetoniaclathrata G.-A. Olivier, 1792 for Inca Lepeletier & Audinet-Serville, 1828 (previously Cetoniaynca Weber, 1801); Gnathoceravitticollis W. Kirby, 1825 for Gnathocera W. Kirby, 1825 (previously Gnathoceraimmaculata W. Kirby, 1825); Melolonthavillosula Illiger, 1803 for Chasmatopterus Dejean, 1821 (previously Melolonthahirtula Illiger, 1803); STAPHYLINIDAE: Staphylinuspolitus Linnaeus, 1758 for Philonthus Stephens, 1829 (previously Staphylinussplendens Fabricius, 1792); ZOPHERIDAE: Hispamutica Linnaeus, 1767 for Orthocerus Latreille, 1797 (previously Tenebriohirticornis DeGeer, 1775). The discovery of type species fixations that are older than those currently accepted pose a threat to nomenclatural stability (an application to the Commission is necessary to address each problem): CANTHARIDAE: Malthinus Latreille, 1805, Malthodes Kiesenwetter, 1852; CARABIDAE: Bradycellus Erichson, 1837, Chlaenius Bonelli, 1810, Harpalus Latreille, 1802, Lebia Latreille, 1802, Pheropsophus Solier, 1834, Trechus Clairville, 1806; CERAMBYCIDAE: Callichroma Latreille, 1816, Callidium Fabricius, 1775, Cerasphorus Audinet-Serville, 1834, Dorcadion Dalman, 1817, Leptura Linnaeus, 1758, Mesosa Latreille, 1829, Plectromerus Haldeman, 1847; CHRYSOMELIDAE: Amblycerus Thunberg, 1815, Chaetocnema Stephens, 1831, Chlamys Knoch, 1801, Monomacra Chevrolat, 1836, Phratora Chevrolat, 1836, Stylosomus Suffrian, 1847; COLONIDAE: Colon Herbst, 1797; CURCULIONIDAE: Cryphalus Erichson, 1836, Lepyrus Germar, 1817; ELATERIDAE: Adelocera Latreille, 1829, Beliophorus Eschscholtz, 1829; ENDOMYCHIDAE: Amphisternus Germar, 1843, Dapsa Latreille, 1829; GLAPHYRIDAE: Anthypna Eschscholtz, 1818; HISTERIDAE: Hololepta Paykull, 1811, Trypanaeus Eschscholtz, 1829; LEIODIDAE: Anisotoma Panzer, 1796, Camiarus Sharp, 1878, Choleva Latreille, 1797; LYCIDAE: Calopteron Laporte, 1838, Dictyoptera Latreille, 1829; MELOIDAE: Epicauta Dejean, 1834; NITIDULIDAE: Strongylus Herbst, 1792; SCARABAEIDAE: Anisoplia Schönherr, 1817, Anticheira Eschscholtz, 1818, Cyclocephala Dejean, 1821, Glycyphana Burmeister, 1842, Omaloplia Schönherr, 1817, Oniticellus Dejean, 1821, Parachilia Burmeister, 1842, Xylotrupes Hope, 1837; STAPHYLINIDAE: Batrisus Aubé, 1833, Phloeonomus Heer, 1840, Silpha Linnaeus, 1758; TENEBRIONIDAE: Bolitophagus Illiger, 1798, Mycetochara Guérin-Méneville, 1827. Type species are fixed for the following nominal genera: ANTHRIBIDAE: Decataphanesgracilis Labram & Imhoff, 1840 for Decataphanes Labram & Imhoff, 1840; CARABIDAE: Feroniaerratica Dejean, 1828 for Loxandrus J.L. LeConte, 1853; CERAMBYCIDAE: Tmesisternusoblongus Boisduval, 1835 for Icthyosoma Boisduval, 1835; CHRYSOMELIDAE: Brachydactylaannulipes Pic, 1913 for Pseudocrioceris Pic, 1916, Cassidaviridis Linnaeus, 1758 for Evaspistes Gistel, 1856, Ocnosceliscyanoptera Erichson, 1847 for Ocnoscelis Erichson, 1847, Promecothecapetelii Guérin-Méneville, 1840 for Promecotheca Guérin- Méneville, 1840; CLERIDAE: Attelabusmollis Linnaeus, 1758 for Dendroplanetes Gistel, 1856; CORYLOPHIDAE: Corylophusmarginicollis J.L. LeConte, 1852 for Corylophodes A. Matthews, 1885; CURCULIONIDAE: Hoplorhinusmelanocephalus Chevrolat, 1878 for Hoplorhinus Chevrolat, 1878; SonnetiusbinariusCasey, 1922 for Sonnetius Casey, 1922; ELATERIDAE: Pyrophorusmelanoxanthus Candèze, 1865 for Alampes Champion, 1896; PHYCOSECIDAE: Phycosecislitoralis Pascoe, 1875 for Phycosecis Pascoe, 1875; PTILODACTYLIDAE: Aploglossasallei Guérin-Méneville, 1849 for Aploglossa Guérin-Méneville, 1849, Coloboderaovata Klug, 1837 for Colobodera Klug, 1837; PTINIDAE: Dryophilusanobioides Chevrolat, 1832 for Dryobia Gistel, 1856; SCARABAEIDAE: Achloahelvola Erichson, 1840 for Achloa Erichson, 1840, Camentaobesa Burmeister, 1855 for Camenta Erichson, 1847, Pinotustalaus Erichson, 1847 for Pinotus Erichson, 1847, Psilonychusecklonii Burmeister, 1855 for Psilonychus Burmeister, 1855. New replacement name: CERAMBYCIDAE: Basorus Bouchard & Bousquet, nom. nov. for Sobarus Harold, 1879. New status: CARABIDAE: KRYZHANOVSKIANINI Deuve, 2020, stat. nov. is given the rank of tribe instead of subfamily since our classification uses the rank of subfamily for PAUSSINAE rather than family rank; CERAMBYCIDAE: Amymoma Pascoe, 1866, stat. nov. is used as valid over Neoamymoma Marinoni, 1977, Holopterus Blanchard, 1851, stat. nov. is used as valid over Proholopterus Monné, 2012; CURCULIONIDAE: Phytophilus Schönherr, 1835, stat. nov. is used as valid over the unnecessary new replacement name Synophthalmus Lacordaire, 1863; EUCNEMIDAE: Nematodinus Lea, 1919, stat. nov. is used as valid instead of Arrhipis Gemminger, 1869, which is a junior homonym. Details regarding additional nomenclatural issues that still need to be resolved are included in the entry for each of these type genera: BOSTRICHIDAE: Lyctus Fabricius, 1792; BRENTIDAE: Trachelizus Dejean, 1834; BUPRESTIDAE: Pristiptera Dejean, 1833; CANTHARIDAE: Chauliognathus Hentz, 1830, Telephorus Schäffer, 1766; CARABIDAE: Calathus Bonelli, 1810, Cosnania Dejean, 1821, Dicrochile Guérin-Méneville, 1847, Epactius D.H. Schneider, 1791, Merismoderus Westwood, 1847, Polyhirma Chaudoir, 1850, Solenogenys Westwood, 1860, Zabrus Clairville, 1806; CERAMBYCIDAE: Ancita J. Thomson, 1864, Compsocerus Audinet-Serville, 1834, Dorcadodium Gistel, 1856, Glenea Newman, 1842; Hesperophanes Dejean, 1835, Neoclytus J. Thomson, 1860, Phymasterna Laporte, 1840, Tetrops Stephens, 1829, Zygocera Erichson, 1842; CHRYSOMELIDAE: Acanthoscelides Schilsky, 1905, Corynodes Hope, 1841, Edusella Chapuis, 1874; Hemisphaerota Chevrolat, 1836; Physonota Boheman, 1854, Porphyraspis Hope, 1841; CLERIDAE: Dermestoides Schäffer, 1777; COCCINELLIDAE: Hippodamia Chevrolat, 1836, Myzia Mulsant, 1846, Platynaspis L. Redtenbacher, 1843; CURCULIONIDAE: Coeliodes Schönherr, 1837, Cryptoderma Ritsema, 1885, Deporaus Leach, 1819, Epistrophus Kirsch, 1869, Geonemus Schönherr, 1833, Hylastes Erichson, 1836; DYTISCIDAE: Deronectes Sharp, 1882, Platynectes Régimbart, 1879; EUCNEMIDAE: Dirhagus Latreille, 1834; HYBOSORIDAE: Ceratocanthus A. White, 1842; HYDROPHILIDAE: Cyclonotum Erichson, 1837; LAMPYRIDAE: Luciola Laporte, 1833; LEIODIDAE: Ptomaphagus Hellwig, 1795; LUCANIDAE: Leptinopterus Hope, 1838; LYCIDAE: Cladophorus Guérin-Méneville, 1830, Mimolibnetis Kazantsev, 2000; MELOIDAE: Mylabris Fabricius, 1775; NITIDULIDAE: Meligethes Stephens, 1829; PTILODACTYLIDAE: Daemon Laporte, 1838; SCARABAEIDAE: Allidiostoma Arrow, 1940, Heterochelus Burmeister, 1844, Liatongus Reitter, 1892, Lomaptera Gory & Percheron, 1833, Megaceras Hope, 1837, Stenotarsia Burmeister, 1842; STAPHYLINIDAE: Actocharis Fauvel, 1871, Aleochara Gravenhorst, 1802; STENOTRACHELIDAE: Stenotrachelus Berthold, 1827; TENEBRIONIDAE: Cryptochile Latreille, 1828, Heliopates Dejean, 1834, Helops Fabricius, 1775. First Reviser actions deciding the correct original spelling: CARABIDAE: Aristochroodes Marcilhac, 1993 (not Aritochroodes); CERAMBYCIDAE: Dorcadodium Gistel, 1856 (not Dorcadodion), EVODININI Zamoroka, 2022 (not EVODINIINI); CHRYSOMELIDAE: Caryopemon Jekel, 1855 (not Carpopemon), Decarthrocera Laboissière, 1937 (not Decarthrocerina); CICINDELIDAE: Odontocheila Laporte, 1834 (not Odontacheila); CLERIDAE: CORMODINA Bartlett, 2021 (not CORMODIINA), Orthopleura Spinola, 1845 (not Orthoplevra, not Orthopleuva); CURCULIONIDAE: Arachnobas Boisduval, 1835 (not Arachnopus), Palaeocryptorhynchus Poinar, 2009 (not Palaeocryptorhynus); DYTISCIDAE: Ambarticus Yang et al., 2019 and AMBARTICINI Yang et al., 2019 (not Ambraticus, not AMBRATICINI); LAMPYRIDAE: Megalophthalmus G.R. Gray, 1831 (not Megolophthalmus, not Megalopthalmus); SCARABAEIDAE: Mentophilus Laporte, 1840 (not Mintophilus, not Minthophilus), Pseudadoretusdilutellus Semenov, 1889 (not P.ditutellus). While the correct identification of the type species is assumed, in some cases evidence suggests that species were misidentified when they were fixed as the type of a particular nominal genus. Following the requirements of Article 70.3.2 of the International Code of Zoological Nomenclature we hereby fix the following type species (which in each case is the taxonomic species actually involved in the misidentification): ATTELABIDAE: Rhynchitescavifrons Gyllenhal, 1833 for Lasiorhynchites Jekel, 1860; BOSTRICHIDAE: Ligniperdaterebrans Pallas, 1772 for Apate Fabricius, 1775; BRENTIDAE: Ceocephalusappendiculatus Boheman, 1833 for Uroptera Berthold, 1827; BUPRESTIDAE: Buprestisundecimmaculata Herbst, 1784 for Ptosima Dejean, 1833; CARABIDAE: Amaralunicollis Schiødte, 1837 for Amara Bonelli, 1810, Buprestisconnexus Geoffroy, 1785 for Polistichus Bonelli, 1810, Carabusatrorufus Strøm, 1768 for Patrobus Dejean, 1821, Carabusgigas Creutzer, 1799 for Procerus Dejean, 1821, Carabusteutonus Schrank, 1781 for Stenolophus Dejean, 1821, Carenumbonellii Westwood, 1842 for Carenum Bonelli, 1813, Scaritespicipes G.-A. Olivier, 1795 for Acinopus Dejean, 1821, Trigonotomaindica Brullé, 1834 for Trigonotoma Dejean, 1828; CERAMBYCIDAE: Cerambyxlusitanus Linnaeus, 1767 for Exocentrus Dejean, 1835, Clytussupernotatus Say, 1824 for Psenocerus J.L. LeConte, 1852; CICINDELIDAE: Ctenostomajekelii Chevrolat, 1858 for Ctenostoma Klug, 1821; CURCULIONIDAE: Cnemogonuslecontei Dietz, 1896 for Cnemogonus J.L. LeConte, 1876; Phloeophagusturbatus Schönherr, 1845 for Phloeophagus Schönherr, 1838; GEOTRUPIDAE: Lucanusapterus Laxmann, 1770 for Lethrus Scopoli, 1777; HISTERIDAE: Histerrugiceps Duftschmid, 1805 for Hypocaccus C.G. Thomson, 1867; HYBOSORIDAE: Hybosorusilligeri Reiche, 1853 for Hybosorus W.S. MacLeay, 1819; HYDROPHILIDAE: Hydrophilusmelanocephalus G.-A. Olivier, 1793 for Enochrus C.G. Thomson, 1859; MYCETAEIDAE: Dermestessubterraneus Fabricius, 1801 for Mycetaea Stephens, 1829; SCARABAEIDAE: Aulaciumcarinatum Reiche, 1841 for Mentophilus Laporte, 1840, Phanaeusvindex W.S. MacLeay, 1819 for Phanaeus W.S. MacLeay, 1819, Ptinusgermanus Linnaeus, 1767 for Rhyssemus Mulsant, 1842, Scarabaeuslatipes Guérin-Méneville, 1838 for Cheiroplatys Hope, 1837; STAPHYLINIDAE: Scydmaenustarsatus P.W.J. Müller & Kunze, 1822 for Scydmaenus Latreille, 1802. New synonyms: CERAMBYCIDAE: CARILIINI Zamoroka, 2022, syn. nov. of ACMAEOPINI Della Beffa, 1915, DOLOCERINI Özdikmen, 2016, syn. nov. of BRACHYPTEROMINI Sama, 2008, PELOSSINI Tavakilian, 2013, syn. nov. of LYGRINI Sama, 2008, PROHOLOPTERINI Monné, 2012, syn. nov. of HOLOPTERINI Lacordaire, 1868.

9.
Muscle Nerve ; 48(3): 403-14, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813613

RESUMEN

INTRODUCTION: Mast cells (MCs) can stimulate cell proliferation, but their specific contribution to skeletal muscle regeneration is not well defined. METHODS: L6 myoblast proliferation was assessed in coculture with MCs or when grown with MC-conditioned media. To address the in vivo implication of MCs in regeneration, rats were treated with cromolyn, and myoblast proliferation, immune cell accumulation, and myogenic factors were assessed in bupivacaine-injured muscles. RESULTS: In vitro, both procedures increased the L6 cell proliferation rate, and this was tryptase-dependent. In vivo, MC stabilization increased myoblast proliferation and accumulation of macrophages CD68 and CD163 after injury. This correlated with a sequential increase in MyoD and myogenin protein level expression. CONCLUSIONS: MCs can directly stimulate muscle cell proliferation via tryptase. MCs can influence myoblast proliferation in vivo, but this effect seems to be predominantly related to their modulation of macrophage recruitment. The MC is a potential actor in the early stages of muscle healing.


Asunto(s)
Proliferación Celular , Mastocitos/fisiología , Células Musculares/fisiología , Músculo Esquelético/citología , Enfermedades Musculares/patología , Análisis de Varianza , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Leucocitos/fisiología , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Enfermedades Musculares/metabolismo , Neutrófilos/metabolismo , Oligopéptidos/metabolismo , Factor de Transcripción PAX7/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Triptasas/metabolismo
10.
BMC Musculoskelet Disord ; 14: 359, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24354415

RESUMEN

BACKGROUND: Sequential accumulation of M1 and M2 macrophages is critical for skeletal muscle recovery after an acute injury. While M1 accumulation is believed to rely on monocyte infiltration, the mechanisms of M2 accumulation remain controversial, but could involve an infiltrating precursor. Yet, strong depletion of monocytes only partially impairs skeletal muscle healing, supporting the existence of alternative mechanisms to palliate the loss of infiltrating macrophage progenitors. The aims of this study are thus to investigate if proliferation occurs in macrophage subsets within injured skeletal muscles; and to determine if monocyte depletion leads to increased proliferation of macrophages after injury. METHODS: Injury was induced by bupivacaine injection in the tibialis anterior muscle of rats. Blood monocytes were depleted by daily intravenous injections of liposome-encapsulated clodronate, starting 24 h prior to injury. In separate experiments, irradiation of hind limb was also performed to prevent resident cell proliferation. Upon euthanasia, blood and muscles were collected for flow cytometric analyses of macrophage/monocyte subsets. RESULTS: Clodronate induced a 80%-90% depletion of monocyte but only led to 57% and 41% decrease of M1 and M2 macrophage accumulation, respectively, 2 d following injury. Conversely, the number of M1 macrophages in monocyte-depleted rats was 2.4-fold higher than in non-depleted rats 4 d after injury. This was associated with a 16-fold increase in the number of proliferative M1 macrophages, which was reduced by 46% in irradiated animals. Proliferation of M2 macrophages was increased tenfold by clodronate treatment 4 d post injury. The accumulation of M2 macrophages was partially impaired by irradiation, regardless of monocyte depletion. CONCLUSIONS: M1 and M2 subsets proliferate after skeletal muscle injury and their proliferation is enhanced under condition of monocyte depletion. Our study supports the conclusion that both infiltrating and resident precursors could contribute to M1 or M2 macrophage accumulation in muscle injury.


Asunto(s)
Macrófagos/fisiología , Monocitos/fisiología , Músculo Esquelético/lesiones , Traumatismos de los Tejidos Blandos/inmunología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Proliferación Celular , Femenino , Músculo Esquelético/inmunología , Ratas , Ratas Wistar , Receptores de Superficie Celular/metabolismo
11.
Biodivers Data J ; 11: e103261, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476207

RESUMEN

Background: The univoltine leaf beetle Chrysolinafastuosa (Scopoli, 1763) is native to in the Palearctic Region from eastern Siberia to western Europe. New information: First North American records are presented for C.fastuosa (Scopoli, 1763) (Coleoptera, Chrysomelidae, Chrysomelinae), as confirmed by vouchered specimens from Canada: Nova Scotia. Additional citizen science records from USA: Vermont are also discussed. Diagnostic information is presented to distinguish C.fastuosa from other North American Chrysomelidae and a species distribution model to assess its potential spread in North America is presented. This insect is expected to cause some feeding damage to above-ground parts of ornamental and invasive Lamiaceae, especially species of Galeopsis L. The species distribution model and the range of its host plant Galeopsistetrahit, suggest the north-eastern US and south-eastern Canada, from the Atlantic coast to the west end of Lake Superior provide the most suitable conditions for this species. The United States of America and Canada are now known to be home to 70 or more species of adventive Chrysomelidae.

12.
Environ Entomol ; 52(1): 18-30, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36424848

RESUMEN

Ceutorhynchinae Gistel (Coleoptera: Curculionidae) are a highly diverse phytophagous group of weevils in which the most species rich genus, Ceutorhynchus Germar (Coleoptera: Curculionidae), is mainly associated with Brassicaceae. Some Ceutorhynchinae, such as the invasive cabbage seedpod weevil (CSW), Ceutorhynchus obstrictus (Marsham), are important pests of cultivated Brassicaceae, and others are natural enemies of weeds and potential biological control agents. This study aims to characterize Ceutorhynchinae assemblages in canola growing regions of Quebec. Ceutorhynchinae were sampled in areas adjacent to canola fields or other crops in six administrative regions of Quebec during the summers of 2019 and 2020. A total of 25 Ceutorhynchinae species were collected and identified. Canonical analysis and multivariate regression tree analysis revealed that the assemblage of Ceutorhynchinae varied regionally and was either dominated by the invasive canola pest CSW or by the native weevil Ceutorhynchus neglectus Blatchley. Our results also highlighted new biological associations between weevils and Brassicaceae like the CSW with the yellow rocket, Barbarea vulgaris R. Br., native Ceutorhynchus pauxillus Dietz with common pepper grass, Lepidium densiflorum, and native Ceutorhynchus semirufus LeConte with Pennsylvania bittercress, Cardamine pensylvanica Muhl. This study also provides a useful tool to find new biological control agents against Brassicaceae weeds and to monitor the abundance and diversity of this taxon and provide baseline data to assess future impacts of exotic parasitoids of CSW on native weevils.


Asunto(s)
Brassicaceae , Gorgojos , Animales , Quebec , Agentes de Control Biológico , Canadá
13.
Zookeys ; 1136: 125-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762054

RESUMEN

Thirty species of Curculionoidea (28 Curculionidae and one each of Brentidae and Nemonychidae) are reported as new records from the Canadian province of Newfoundland and Labrador, most of them from the island of Newfoundland. As well, 13 species of Curculionidae and one of Brentidae previously recorded from Newfoundland are newly reported from Labrador, and one Curculionidae previously recorded from Labrador is newly reported from Newfoundland. The Palearctic species, Orthochaetessetiger ([Beck]), is herein reported as a new Canadian and North American record, with specimens documented from Newfoundland and British Columbia. Additions to the primary key for North American weevils are provided to help identify this genus among the North American fauna. Of the species of Curculionoidea previously recorded from the province in published literature, there is uncertain evidence for the occurrence of 14 species in the province as a whole or in the Labrador portion. Seven species are hereby removed from the faunal list for the province. One of those, Trachodeshispidus (Linnaeus), is also removed from the Canadian faunal list. The 134 species of Curculionoidea recorded from NL are listed and a brief synopsis of the fauna provided.

14.
R Soc Open Sci ; 9(3): 211771, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35345430

RESUMEN

Beetles constitute the most biodiverse animal order with over 380 000 described species and possibly several million more yet unnamed. Recent phylogenomic studies have arrived at considerably incongruent topologies and widely varying estimates of divergence dates for major beetle clades. Here, we use a dataset of 68 single-copy nuclear protein-coding (NPC) genes sampling 129 out of the 193 recognized extant families as well as the first comprehensive set of fully justified fossil calibrations to recover a refined timescale of beetle evolution. Using phylogenetic methods that counter the effects of compositional and rate heterogeneity, we recover a topology congruent with morphological studies, which we use, combined with other recent phylogenomic studies, to propose several formal changes in the classification of Coleoptera: Scirtiformia and Scirtoidea sensu nov., Clambiformia ser. nov. and Clamboidea sensu nov., Rhinorhipiformia ser. nov., Byrrhoidea sensu nov., Dryopoidea stat. res., Nosodendriformia ser. nov. and Staphyliniformia sensu nov., and Erotyloidea stat. nov., Nitiduloidea stat. nov. and Cucujoidea sensu nov., alongside changes below the superfamily level. Our divergence time analyses recovered a late Carboniferous origin of Coleoptera, a late Palaeozoic origin of all modern beetle suborders and a Triassic-Jurassic origin of most extant families, while fundamental divergences within beetle phylogeny did not coincide with the hypothesis of a Cretaceous Terrestrial Revolution.

15.
Am J Physiol Regul Integr Comp Physiol ; 300(3): R724-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209381

RESUMEN

Clinical observations from Buruli ulcer (BU) patients in West Africa suggest that severe Mycobacterium ulcerans infections can cause skeletal muscle contracture and atrophy leading to significant impairment in function. In the present study, male mice C57BL/6 were subcutaneously injected with M. ulcerans in proximity to the right biceps muscle, avoiding direct physical contact between the infectious agent and the skeletal muscle. The histological, morphological, and functional properties of the muscles were assessed at different times after the injection. On day 42 postinjection, the isometric tetanic force and the cross-sectional area of the myofibers were reduced by 31% and 29%, respectively, in the proximate-infected muscles relative to the control muscles. The necrotic areas of the proximate-infected muscles had spread to 7% of the total area by day 42 postinjection. However, the number of central nucleated fibers and myogenic regulatory factors (MyoD and myogenin) remained stable and low. Furthermore, Pax-7 expression did not increase significantly in mycolactone-injected muscles, indicating that the satellite cell proliferation is abrogated by the toxin. In addition, the fibrotic area increased progressively during the infection. Lastly, muscle-specific RING finger protein 1 (MuRF-1) and atrogin-1/muscle atrophy F-box protein (atrogin-1/MAFbx), two muscle-specific E3 ubiquitin ligases, were upregulated in the presence of M. ulcerans. These findings confirmed that skeletal muscle is affected in our model of subcutaneous infection with M. ulcerans and that a better understanding of muscle contractures and weakness is essential to develop a therapy to minimize loss of function and promote the autonomy of BU patients.


Asunto(s)
Toxinas Bacterianas/administración & dosificación , Úlcera de Buruli/complicaciones , Proliferación Celular , Contractura/microbiología , Fuerza Muscular , Músculo Esquelético/microbiología , Atrofia Muscular/microbiología , Mycobacterium ulcerans/patogenicidad , Células Satélite del Músculo Esquelético/microbiología , Animales , Toxinas Bacterianas/metabolismo , Úlcera de Buruli/patología , Úlcera de Buruli/fisiopatología , Contractura/metabolismo , Contractura/patología , Contractura/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Inyecciones Intramusculares , Contracción Isométrica , Macrólidos , Masculino , Ratones , Ratones Endogámicos C57BL , Fatiga Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Mycobacterium ulcerans/metabolismo , Proteína MioD/metabolismo , Necrosis , Factor de Transcripción PAX7/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Factores de Tiempo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
16.
Zootaxa ; 5048(4): 575-580, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34810784

RESUMEN

Based on type specimen investigation, the status of Helops tristis Rossi, 1790 as the type species of the genus Dendarus Dejean, 1821 is confirmed. Lectotypes are designated for Helops tristis and Pandarus coarcticollis Mulsant, 1854 both are classified in Dendarus. Pandarus libanicus Desbrochers des Loges, 1881 is recognised as a junior synonym of Dendarus calcaratus Baudi di Selve, 1881. Both taxa share the same locus typicus (Mount Lebanon in Lebanon) and are morphologically distinct from the Italian Dendarus lugens (Mulsant Rey, 1854). Finally, D. lugens is considered as a synonym of D. (Dendarus) coarcticollis.


Asunto(s)
Escarabajos , Copépodos , Distribución Animal , Animales
17.
Zookeys ; 1050: 1-633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34385881

RESUMEN

A review of genus-group names for darkling beetles in the family Tenebrionidae (Insecta: Coleoptera) is presented. A catalogue of 4122 nomenclaturally available genus-group names, representing 2307 valid genera (33 of which are extinct) and 761 valid subgenera, is given. For each name the author, date, page number, gender, type species, type fixation, current status, and first synonymy (when the name is a synonym) are provided. Genus-group names in this family are also recorded in a classification framework, along with data on the distribution of valid genera and subgenera within major biogeographical realms. A list of 535 unavailable genus-group names (e.g., incorrect subsequent spellings) is included. Notes on the date of publication of references cited herein are given, when known. The following genera and subgenera are made available for the first time: Anemiadena Bouchard & Bousquet, subgen. nov. (in Cheirodes Gené, 1839), Armigena Bouchard & Bousquet, subgen. nov. (in Nesogena Mäklin, 1863), Debeauxiella Bouchard & Bousquet, subgen. nov. (in Hyperops Eschscholtz, 1831), Hyperopsis Bouchard & Bousquet, subgen. nov. (in Hyperops Eschscholtz, 1831), Linio Bouchard & Bousquet, subgen. nov. (in Nilio Latreille, 1802), Matthewsotys Bouchard & Bousquet, gen. nov., Neosolenopistoma Bouchard & Bousquet, subgen. nov. (in Eurynotus W. Kirby, 1819), Paragena Bouchard & Bousquet, subgen. nov. (in Nesogena Mäklin, 1863), Paulianaria Bouchard & Bousquet, gen. nov., Phyllechus Bouchard & Bousquet, gen. nov., Prorhytinota Bouchard & Bousquet, subgen. nov. (in Rhytinota Eschscholtz, 1831), Pseudorozonia Bouchard & Bousquet, subgen. nov. (in Rozonia Fairmaire, 1888), Pseudothinobatis Bouchard & Bousquet, gen. nov., Rhytinopsis Bouchard & Bousquet, subgen. nov. (in Thalpophilodes Strand, 1942), Rhytistena Bouchard & Bousquet, subgen. nov. (in Rhytinota Eschscholtz, 1831), Spinosdara Bouchard & Bousquet, subgen. nov. (in Osdara Walker, 1858), Spongesmia Bouchard & Bousquet, subgen. nov. (in Adesmia Fischer, 1822), and Zambesmia Bouchard & Bousquet, subgen. nov. (in Adesmia Fischer, 1822). The names Adeps Gistel, 1857 and Adepsion Strand, 1917 syn. nov. [= Tetraphyllus Laporte & Brullé, 1831], Asyrmatus Canzoneri, 1959 syn. nov. [= Pystelops Gozis, 1910], Euzadenos Koch, 1956 syn. nov. [= Selenepistoma Dejean, 1834], Gondwanodilamus Kaszab, 1969 syn. nov. [= Conibius J.L. LeConte, 1851], Gyrinodes Fauvel, 1897 syn. nov. [= Nesotes Allard, 1876], Helopondrus Reitter, 1922 syn. nov. [= Horistelops Gozis, 1910], Hybonotus Dejean, 1834 syn. nov. [= Damatris Laporte, 1840], Iphthimera Reitter, 1916 syn. nov. [= Metriopus Solier, 1835], Lagriomima Pic, 1950 syn. nov. [= Neogria Borchmann, 1911], Orphelops Gozis, 1910 syn. nov. [= Nalassus Mulsant, 1854], Phymatium Billberg, 1820 syn. nov. [= Cryptochile Latreille, 1828], Prosoblapsia Skopin & Kaszab, 1978 syn. nov. [= Genoblaps Bauer, 1921], and Pseudopimelia Gebler, 1859 syn. nov. [= Lasiostola Dejean, 1834] are established as new synonyms (valid names in square brackets). Anachayus Bouchard & Bousquet, nom. nov. is proposed as a replacement name for Chatanayus Ardoin, 1957, Genateropa Bouchard & Bousquet, nom. nov. as a replacement name for Apterogena Ardoin, 1962, Hemipristula Bouchard & Bousquet, nom. nov. as a replacement name for Hemipristis Kolbe, 1903, Kochotella Bouchard & Bousquet, nom. nov. as a replacement name for Millotella Koch, 1962, Medvedevoblaps Bouchard & Bousquet, nom. nov. as a replacement name for Protoblaps G.S. Medvedev, 1998, and Subpterocoma Bouchard & Bousquet, nom. nov. is proposed as a replacement name for Pseudopimelia Motschulsky, 1860. Neoeutrapela Bousquet & Bouchard, 2013 is downgraded to a subgenus (stat. nov.) of Impressosora Pic, 1952. Anchomma J.L. LeConte, 1858 is placed in Stenosini: Dichillina (previously in Pimeliinae: Anepsiini); Entypodera Gerstaecker, 1871, Impressosora Pic, 1952 and Xanthalia Fairmaire, 1894 are placed in Lagriinae: Lagriini: Statirina (previously in Lagriinae: Lagriini: Lagriina); Loxostethus Triplehorn, 1962 is placed in Diaperinae: Diaperini: Diaperina (previously in Diaperinae: Diaperini: Adelinina); Periphanodes Gebien, 1943 is placed in Stenochiinae: Cnodalonini (previously in Tenebrioninae: Helopini); Zadenos Laporte, 1840 is downgraded to a subgenus (stat. nov.) of the older name Selenepistoma Dejean, 1834. The type species [placed in square brackets] of the following available genus-group names are designated for the first time: Allostrongylium Kolbe, 1896 [Allostrongylium silvestre Kolbe, 1896], Auristira Borchmann, 1916 [Auristira octocostata Borchmann, 1916], Blapidocampsia Pic, 1919 [Campsia pallidipes Pic, 1918], Cerostena Solier, 1836 [Cerostena deplanata Solier, 1836], Coracostira Fairmaire, 1899 [Coracostira armipes Fairmaire, 1899], Dischidus Kolbe, 1886 [Helops sinuatus Fabricius, 1801], Eccoptostoma Gebien, 1913 [Taraxides ruficrus Fairmaire, 1894], Ellaemus Pascoe, 1866 [Emcephalus submaculatus Brême, 1842], Epeurycaulus Kolbe, 1902 [Epeurycaulus aldabricus Kolbe, 1902], Euschatia Solier, 1851 [Euschatia proxima Solier, 1851], Heliocaes Bedel, 1906 [Blaps emarginata Fabricius, 1792], Hemipristis Kolbe, 1903 [Hemipristis ukamia Kolbe, 1903], Iphthimera Reitter, 1916 [Stenocara ruficornis Solier, 1835], Isopedus Stein, 1877 [Helops tenebrioides Germar, 1813], Malacova Fairmaire, 1898 [Malacova bicolor Fairmaire, 1898], Modicodisema Pic, 1917 [Disema subopaca Pic, 1912], Peltadesmia Kuntzen, 1916 [Metriopus platynotus Gerstaecker, 1854], Phymatium Billberg, 1820 [Pimelia maculata Fabricius, 1781], Podoces Péringuey, 1886 [Podoces granosula Péringuey, 1886], Pseuduroplatopsis Pic, 1913 [Borchmannia javana Pic, 1913], Pteraulus Solier, 1848 [Pteraulus sulcatipennis Solier, 1848], Sciaca Solier, 1835 [Hylithus disctinctus Solier, 1835], Sterces Champion, 1891 [Sterces violaceipennis Champion, 1891] and Teremenes Carter, 1914 [Tenebrio longipennis Hope, 1843]. Evidence suggests that some type species were misidentified. In these instances, information on the misidentification is provided and, in the following cases, the taxonomic species actually involved is fixed as the type species [placed in square brackets] following requirements in Article 70.3 of the International Code of Zoological Nomenclature: Accanthopus Dejean, 1821 [Tenebrio velikensis Piller & Mitterpacher, 1783], Becvaramarygmus Masumoto, 1999 [Dietysus nodicornis Gravely, 1915], Heterophaga Dejean, 1834 [Opatrum laevigatum Fabricius, 1781], Laena Dejean, 1821, [Scaurus viennensis Sturm, 1807], Margus Dejean, 1834 [Colydium castaneum Herbst, 1797], Pachycera Eschscholtz, 1831 [Tenebrio buprestoides Fabricius, 1781], Saragus Erichson, 1842 [Celibe costata Solier, 1848], Stene Stephens, 1829 [Colydium castaneum Herbst, 1797], Stenosis Herbst, 1799 [Tagenia intermedia Solier, 1838] and Tentyriopsis Gebien, 1928 [Tentyriopsis pertyi Gebien, 1940]. The following First Reviser actions are proposed to fix the precedence of names or nomenclatural acts (rejected name or act in square brackets): Stenosis ciliaris Gebien, 1920 as the type species for Afronosis G.S. Medvedev, 1995 [Stenosis leontjevi G.S. Medvedev, 1995], Alienoplonyx Bremer, 2019 [Alienolonyx], Amblypteraca Mas-Peinado, Buckley, Ruiz & García-París, 2018 [Amplypteraca], Caenocrypticoides Kaszab, 1969 [Caenocripticoides], Deriles Motschulsky, 1872 [Derilis], Eccoptostira Borchmann, 1936 [Ecoptostira], †Eodromus Haupt, 1950 [†Edromus], Eutelus Solier, 1843 [Lutelus], Euthriptera Reitter, 1893 [Enthriptera], Meglyphus Motschulsky, 1872 [Megliphus], Microtelopsis Koch, 1940 [Extetranosis Koch, 1940, Hypermicrotelopsis Koch, 1940], Neandrosus Pic, 1921 [Neoandrosus], Nodosogylium Pic, 1951 [Nodosogilium], Notiolesthus Motschulsky, 1872 [Notiolosthus], Pseudeucyrtus Pic, 1916 [Pseudocyrtus], Pseudotrichoplatyscelis Kaszab, 1960 [Pseudotrichoplatynoscelis and Pseudotrichoplatycelis], Rhydimorpha Koch, 1943 [Rhytimorpha], Rhophobas Motschulsky, 1872 [Rophobas], Rhyssochiton Gray, 1831 [Ryssocheton and Ryssochiton], Sphaerotidius Kaszab, 1941 [Spaerotidius], Stira Agassiz, 1846 (Mollusca) [Stira Agassiz, 1846 (Coleoptera)], Sulpiusoma Ferrer, 2006 [Sulpiosoma] and Taenobates Motschulsky, 1872 [Taeniobates]. Supporting evidence is provided for the conservation of usage of Cyphaleus Westwood, 1841 nomen protectum over Chrysobalus Boisduval, 1835 nomen oblitum.

18.
Zookeys ; 922: 65-139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256157

RESUMEN

Changes to the treatment of Coleoptera family-group names published by Bouchard et al. (2011) are given. These include necessary additions and corrections based on much-appreciated suggestions from our colleagues, as well as our own research. Our ultimate goal is to assemble a complete list of available Coleoptera family-group names published up to the end of 2010 (including information about their spelling, author, year of publication, and type genus). The following 59 available Coleoptera family-group names are based on type genera not included in Bouchard et al. (2011): Prothydrinae Guignot, 1954, Aulonogyrini Ochs, 1953 (Gyrinidae); Pogonostomini Mandl 1954, Merismoderini Wasmann, 1929, †Escheriidae Kolbe, 1880 (Carabidae); Timarchopsinae Wang, Ponomarenko & Zhang, 2010 (Coptoclavidae); Stictocraniini Jakobson, 1914 (Staphylinidae); Cylindrocaulini Zang, 1905, Kaupiolinae Zang, 1905 (Passalidae); Phaeochroinae Kolbe, 1912 (Hybosoridae); Anthypnidae Chalande, 1884 (Glaphyridae); Comophorini Britton, 1957, Comophini Britton, 1978, Chasmidae Streubel, 1846, Mimelidae Theobald, 1882, Rhepsimidae Streubel, 1846, Ometidae Streubel, 1846, Jumnidae Burmeister, 1842, Evambateidae Gistel, 1856 (Scarabaeidae); Protelmidae Jeannel, 1950 (Byrrhoidea); Pseudeucinetini Csiki, 1924 (Limnichidae); Xylotrogidae Schönfeldt, 1887 (Bostrichidae); †Mesernobiinae Engel, 2010, Fabrasiinae Lawrence & Reichardt, 1966 (Ptinidae); Arhinopini Kirejtshuk & Bouchard, 2018 (Nitidulidae); Hypodacninae Dajoz, 1976, Ceuthocera Mannerheim, 1852 (Cerylonidae); Symbiotinae Joy, 1932 (Endomychidae); Cheilomenini Schilder & Schilder, 1928, Veraniini Schilder & Schilder, 1928 (Coccinellidae); Ennearthroninae Chûjô, 1939 (Ciidae); Curtimordini Odnosum, 2010, Mordellochroini Odnosum, 2010 (Mordellidae); Chanopterinae Borchmann, 1915 (Promecheilidae); Heptaphyllini Prudhomme de Borre, 1886, Olocratarii Baudi di Selve, 1875, Opatrinaires Mulsant & Rey, 1853, Telacianae Poey, 1854, Ancylopominae Pascoe, 1871 (Tenebrionidae); Oxycopiini Arnett, 1984 (Oedemeridae); Eutrypteidae Gistel, 1856 (Mycteridae); Pogonocerinae Iablokoff-Khnzorian, 1985 (Pyrochroidae); Amblyderini Desbrochers des Loges, 1899 (Anthicidae); Trotommideini Pic, 1903 (Scraptiidae); Acmaeopsini Della Beffa, 1915, Trigonarthrini Villiers, 1984, Eunidiini Téocchi, Sudre & Jiroux, 2010 (Cerambycidae); Macropleini Lopatin, 1977, Stenopodiides Horn, 1883, Microrhopalides Horn, 1883, Colaphidae Siegel, 1866, Lexiphanini Wilcox, 1954 (Chrysomelidae); †Medmetrioxenoidesini Legalov, 2010, †Megametrioxenoidesini Legalov, 2010 (Nemonychidae); Myrmecinae Tanner, 1966, Tapinotinae Joy, 1932, Acallinae Joy, 1932, Cycloderini Hoffmann, 1950, Sthereini Hatch, 1971 (Curculionidae). The following 21 family-group names, listed as unavailable in Bouchard et al. (2011), are determined to be available: Eohomopterinae Wasmann, 1929 (Carabidae); Prosopocoilini Benesh, 1960, Pseudodorcini Benesh, 1960, Rhyssonotini Benesh, 1960 (Lucanidae); Galbini Beaulieu, 1919 (Eucnemidae); Troglopates Mulsant & Rey, 1867 (Melyridae); Hippodamiini Weise, 1885 (Coccinellidae); Micrositates Mulsant & Rey, 1854, Héliopathaires Mulsant & Rey, 1854 (Tenebrionidae); Hypasclerini Arnett, 1984; Oxaciini Arnett, 1984 (Oedemeridae); Stilpnonotinae Borchmann, 1936 (Mycteridae); Trogocryptinae Lawrence, 1991 (Salpingidae); Grammopterini Della Beffa, 1915, Aedilinae Perrier, 1893, Anaesthetinae Perrier, 1893 (Cerambycidae); Physonotitae Spaeth, 1942, Octotomides Horn, 1883 (Chrysomelidae); Sympiezopinorum Faust, 1886, Sueinae Murayama, 1959, Eccoptopterini Kalshoven, 1959 (Curculionidae). The following names were proposed as new without reference to family-group names based on the same type genus which had been made available at an earlier date: Dineutini Ochs, 1926 (Gyrinidae); Odonteini Shokhin, 2007 (Geotrupidae); Fornaxini Cobos, 1965 (Eucnemidae); Auletobiina Legalov, 2001 (Attelabidae). The priority of several family-group names, listed as valid in Bouchard et al. (2011), is affected by recent bibliographic discoveries or new nomenclatural interpretations. †Necronectinae Ponomarenko, 1977 is treated as permanently invalid and replaced with †Timarchopsinae Wang, Ponomarenko & Zhang, 2010 (Coptoclavidae); Agathidiini Westwood, 1838 is replaced by the older name Anisotomini Horaninow, 1834 (Staphylinidae); Cyrtoscydmini Schaufuss, 1889 is replaced by the older name Stenichnini Fauvel, 1885 (Staphylinidae); Eremazinae Iablokoff-Khnzorian, 1977 is treated as unavailable and replaced with Eremazinae Stebnicka, 1977 (Scarabaeidae); Coryphocerina Burmeister, 1842 is replaced by the older name Rhomborhinina Westwood, 1842 (Scarabaeidae); Eudysantina Bouchard, Lawrence, Davies & Newton, 2005 is replaced by the older name Dysantina Gebien, 1922 which is not permanently invalid (Tenebrionidae). The names Macraulacinae/-ini Fleutiaux, 1923 (Eucnemidae), Anamorphinae Strohecker, 1953 (Endomychidae), Pachycnemina Laporte, 1840 (Scarabaeidae), Thaumastodinae Champion, 1924 (Limnichidae), Eudicronychinae Girard, 1971 (Elateridae), Trogoxylini Lesne, 1921 (Bostrichidae), Laemophloeidae Ganglbauer, 1899 (Laemophloeidae); Ancitini Aurivillius, 1917 (Cerambycidae) and Tropiphorini Marseul, 1863 (Curculionidae) are threatened by the discovery of older names; Reversal of Precedence (ICZN 1999: Art. 23.9) or an application to the International Commission on Zoological Nomenclature will be necessary to retain usage of the younger synonyms. Reversal of Precedence is used herein to qualify the following family-group names as nomina protecta: Murmidiinae Jacquelin du Val, 1858 (Cerylonidae) and Chalepini Weise, 1910 (Chrysomelidae). The following 17 Coleoptera family-group names (some of which are used as valid) are homonyms of other family-group names in zoology, these cases must be referred to the Commission for a ruling to remove the homonymy: Catiniidae Ponomarenko, 1968 (Catiniidae); Homopterinae Wasmann, 1920, Glyptini Horn, 1881 (Carabidae); Tychini Raffray, 1904, Ocypodina Hatch, 1957 (Staphylinidae); Gonatinae Kuwert, 1891 (Passalidae); Aplonychidae Burmeister, 1855 (Scarabaeidae); Microchaetini Paulus, 1973 (Byrrhidae); Epiphanini Muona, 1993 (Eucnemidae); Limoniina Jakobson, 1913 (Elateridae); Ichthyurini Champion, 1915 (Cantharidae); Decamerinae Crowson, 1964 (Trogossitidae); Trichodidae Streubel, 1839 (Cleridae); Monocorynini Miyatake, 1988 (Coccinellidae); Gastrophysina Kippenberg, 2010, Chorinini Weise, 1923 (Chrysomelidae); Meconemini Pierce, 1930 (Anthribidae). The following new substitute names are proposed: Phoroschizus (to replace Schizophorus Ponomarenko, 1968) and Phoroschizidae (to replace Schizophoridae Ponomarenko, 1968); Mesostyloides (to replace Mesostylus Faust, 1894) and Mesostyloidini (to replace Mesostylini Reitter, 1913). The following new genus-group name synonyms are proposed [valid names in square brackets]: Plocastes Gistel, 1856 [Aesalus Fabricius, 1801] (Lucanidae); Evambates Gistel, 1856 [Trichius Fabricius, 1775] (Scarabaeidae); Homoeoplastus Gistel, 1856 [Byturus Latreille, 1797] (Byturidae). Two type genera previously treated as preoccupied and invalid, Heteroscelis Latreille, 1828 and Dysantes Pascoe, 1869 (Tenebrionidae), are determined to be senior homonyms based on bibliographical research. While Dysantes is treated as valid here, Reversal of Precedence (ICZN 1999: Art. 23.9) is used to conserve usage of Anomalipus Guérin-Méneville, 1831 over Heteroscelis.

19.
Wound Repair Regen ; 17(2): 260-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19320895

RESUMEN

Besides their hemostatic function, platelets can express key factors involved in tissue healing. However, the role of platelets in tendon healing following acute injury is poorly understood. We investigated this role by injecting male C57BL/6 mice with an antiplatelet antibody to induce thrombocytopenia. Placebo animals received serum only. The right Achilles tendon was sectioned and sutured using the 8-strand technique that allows immediate weight bearing. Platelet depletion did not alter the accumulation of neutrophils and macrophages or cell proliferation. A slight increase in vascularization was observed 7 days postinjury in tendons from thrombocytopenic mice relative to placebo animals, but the effect had disappeared by day 14. Furthermore, collagen content had a tendency to decrease in Achilles tendons under thrombocytopenia when compared with placebo treatment at 7 days posttrauma. This was correlated with a decline in maximal stress sustained by tendons at day 14 but not after 28 days. The impact of thrombocytopenia was otherwise negligible, as force relaxation and stiffness were similar in the two groups. Our findings demonstrate that platelets modulate early tendon repair following rupture, although the effect is limited over time. Nevertheless, platelets are not essential for the recruitment of inflammatory cells, proliferation, angiogenesis, and tendon maturation.


Asunto(s)
Tendón Calcáneo/lesiones , Plaquetas/fisiología , Modelos Animales de Enfermedad , Traumatismos de los Tendones/fisiopatología , Trombocitopenia/complicaciones , Cicatrización de Heridas/fisiología , Enfermedad Aguda , Animales , Fenómenos Biomecánicos , Proliferación Celular , Colágeno/fisiología , Inmunohistoquímica , Inflamación , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Neutrófilos/fisiología , Rotura , Estrés Mecánico , Traumatismos de los Tendones/complicaciones , Traumatismos de los Tendones/cirugía , Trombocitopenia/inducido químicamente , Factores de Tiempo
20.
Zookeys ; (819): 361-376, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713451

RESUMEN

The beetle fauna of Canada was assessed, including estimates of yet unreported diversity using information from taxonomists and COI sequence clusters in a BOLD (Barcode of Life Datasystems) COI dataset comprising over 77,000 Canadian records. To date, 8302 species of Coleoptera have been recorded in Canada, a 23% increase from the first assessment in 1979. A total of 639 non-native beetle species have become established in Canada, with most species in the Staphylinidae (153 spp.), Curculionidae (107 spp.), Chrysomelidae (56 spp.) and Carabidae (55 spp.). Based on estimates from the taxonomic community and our BOLD dataset, we estimate that slightly more than 1000 beetle species remain to be reported from Canada, either as new records or undescribed species. Renewed enthusiasm toward and financial support for surveys, especially in the central and western provinces of Canada will be critical for detecting, documenting and describing these species. The Barcode of Life database is still far from comprehensive for Canadian Coleoptera but substantial progress has been made and the number of Barcode Index Numbers (BINs) (as candidate species) has reached nearly 70% of the number of species reported from Canada. Comparison of BINs to observed species in a group of Canadian Staphylinidae suggests that BINs may provide a good estimate of species diversity within the beetles. Histeridae is a diverse family in Canada that is notably underrepresented in BOLD. Families such as Mordellidae, Scraptiidae, Latridiidae, Ptiliidae and Scirtidae are poorly known taxonomically in Canada and are represented in our BOLD dataset by many more BINs than recorded species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA