Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 138(45): 14860-14863, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27792322

RESUMEN

We report the stepwise, quantitative transformation of CeIV6(µ3-O)4(µ3-OH)4(OH)6(OH2)6 nodes in a new Ce-BTC (BTC = trimesic acid) metal-organic framework (MOF) into the first CeIII6(µ3-O)4(µ3-OLi)4(H)6(THF)6Li6 metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis.

2.
J Am Chem Soc ; 138(31): 9783-6, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27452528

RESUMEN

Mono(phosphine)-M (M-PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal-organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C-H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M-PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

3.
J Vis Exp ; (148)2019 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-31282896

RESUMEN

The fabrication of devices containing thin film composite membranes necessitates the transfer of these films onto the surfaces of arbitrary support substrates. Accomplishing this transfer in a highly controlled, mechanized, and reproducible manner can eliminate the creation of macroscale defect structures (e.g., tears, cracks, and wrinkles) within the thin film that compromise device performance and the usable area per sample. Here, we describe a general protocol for the highly controlled and mechanized transfer of a polymeric thin film onto an arbitrary porous support substrate for eventual use as a water filtration membrane device. Specifically, we fabricate a block copolymer (BCP) thin film on top of a sacrificial, water-soluble poly(acrylic acid) (PAA) layer and silicon wafer substrate. We then utilize a custom-designed, 3D-printed transfer tool and drain chamber system to deposit, lift-off, and transfer the BCP thin film onto the center of a porous anodized aluminum oxide (AAO) support disc. The transferred BCP thin film is shown to be consistently placed onto the center of the support surface due to the guidance of the meniscus formed between the water and the 3D-printed plastic drain chamber. We also compare our mechanized transfer-processed thin films to those that have been transferred by hand with the use of tweezers. Optical inspection and image analysis of the transferred thin films from the mechanized process confirm that little-to-no macroscale inhomogeneities or plastic deformations are produced, as compared to the multitude of tears and wrinkles produced from manual transfer by hand. Our results suggest that the proposed strategy for thin film transfer can reduce defects when compared to other methods across many systems and applications.


Asunto(s)
Resinas Acrílicas/química , Membranas Artificiales , Silicio/química , Óxido de Aluminio/química , Porosidad , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA