Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Plant Cell ; 35(3): 1013-1037, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36573016

RESUMEN

The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface.


Asunto(s)
Domesticación , Zea mays , Zea mays/genética , Lactonas , Grano Comestible/genética , Fenotipo
2.
Proc Natl Acad Sci U S A ; 119(14): e2111565119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344437

RESUMEN

SignificanceStrigolactones (SLs) are a group of apocarotenoid hormones, which regulates shoot branching and other diverse developmental processes in plants. The major bioactive form(s) of SLs as endogenous hormones has not yet been clarified. Here, we identify an Arabidopsis methyltransferase, CLAMT, responsible for the conversion of an inactive precursor to a biologically active SL that can interact with the SL receptor in vitro. Reverse genetic analysis showed that this enzyme plays an essential role in inhibiting shoot branching. This mutant also contributed to specifying the SL-related metabolites that could move from root to shoot in grafting experiments. Our work has identified a key enzyme necessary for the production of the bioactive form(s) of SLs.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Hormonas/metabolismo , Lactonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
3.
Plant J ; 114(2): 355-370, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775978

RESUMEN

Phosphorus (P) is a major element required for plant growth and development. To cope with P shortage, plants activate local and long-distance signaling pathways, such as an increase in the production and exudation of strigolactones (SLs). The role of the latter in mitigating P deficiency is, however, still largely unknown. To shed light on this, we studied the transcriptional response to P starvation and replenishment in wild-type rice and a SL mutant, dwarf10 (d10), and upon exogenous application of the synthetic SL GR24. P starvation resulted in major transcriptional alterations, such as the upregulation of P TRANSPORTER, SYG1/PHO81/XPR1 (SPX) and VACUOLAR PHOSPHATE EFFLUX TRANSPORTER. Gene Ontology (GO) analysis of the genes induced by P starvation showed enrichment in phospholipid catabolic process and phosphatase activity. In d10, P deficiency induced upregulation of genes enriched for sesquiterpenoid production, secondary shoot formation and metabolic processes, including lactone biosynthesis. Furthermore, several genes induced by GR24 treatment shared the same GO terms with P starvation-induced genes, such as oxidation reduction, heme binding and oxidoreductase activity, hinting at the role that SLs play in the transcriptional reprogramming upon P starvation. Gene co-expression network analysis uncovered a METHYL TRANSFERASE that displayed co-regulation with known rice SL biosynthetic genes. Functional characterization showed that this gene encodes an enzyme catalyzing the conversion of carlactonoic acid to methyl carlactonoate. Our work provides a valuable resource to further studies on the response of crops to P deficiency and reveals a tool for the discovery of SL biosynthetic genes.


Asunto(s)
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/metabolismo , Lactonas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
4.
Plant Mol Biol ; 111(1-2): 153-166, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36255594

RESUMEN

KEY MESSAGE: A highly specialized function for individual LTPs for different products from the same terpenoid biosynthesis pathway is described and the function of an LTP GPI anchor is studied. Sequiterpenes produced in glandular trichomes of the medicinal plant Tanacetum parthenium (feverfew) accumulate in the subcuticular extracellular space. Transport of these compounds over the plasma membrane is presumably by specialized membrane transporters, but it is still not clear how these hydrophobic compounds are subsequently transported over the hydrophilic cell wall. Here we identified eight so-called non-specific Lipid transfer proteins (nsLTPs) genes that are expressed in feverfew trichomes. A putative function of these eight nsLTPs in transport of the lipophilic sesquiterpene lactones produced in feverfew trichomes, was tested in an in-planta transport assay using transient expression in Nicotiana benthamiana. Of eight feverfew nsLTP candidate genes analyzed, two (TpLTP1 and TpLTP2) can specifically improve extracellular accumulation of the sesquiterpene costunolide, while one nsLTP (TpLTP3) shows high specificity towards export of parthenolide. The specificity of the nsLTPs was also tested in an assay that test for the exclusion capacity of the nsLTP for influx of extracellular substrates. In such assay, TpLTP3 was identified as most effective in blocking influx of both costunolide and parthenolide, when these substrates are infiltrated into the apoplast. The TpLTP3 is special in having a GPI-anchor domain, which is essential for the export activity of TpLTP3. However, addition of the TpLTP3 GPI-anchor domain to TpLTP1 resulted in loss of TpLTP1 export activity. These novel export and exclusion assays thus provide new means to test functionality of plant nsLTPs.


Asunto(s)
Sesquiterpenos , Tanacetum parthenium , Tanacetum parthenium/química , Tanacetum parthenium/genética , Tanacetum parthenium/metabolismo , Sesquiterpenos/metabolismo , Lípidos
5.
Plant Mol Biol ; 113(4-5): 303-321, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37995005

RESUMEN

In response to herbivory, Capsicum annuum leaves adapt their specialized metabolome that may protect the plant against herbivore feeding either directly or indirectly through volatile metabolites acting as cues for natural enemies of the herbivore. The volatile blend of spider-mite infested leaves differs from non-challenged leaves predominantly by a higher contribution of mono- and sesquiterpenes. In addition to these terpenoids released into the headspace, the terpenoid composition of the leaves alters upon herbivory. All this suggests an important role for terpenoids and their biosynthetic machinery in the defence against herbivory. Here, we show that the C. annuum genome contains a terpene synthase (TPS) gene family of 103 putative members of which structural analysis revealed that 27 encode functional enzymes. Transcriptome analysis showed that several TPS loci were differentially expressed upon herbivory in leaves of two C. annuum genotypes, that differ in susceptibility towards spider mites. The relative expression of upstream biosynthetic genes from the mevalonate and the methylerythritol phosphate pathway also altered upon herbivory, revealing a shift in the metabolic flux through the terpene biosynthetic module. The expression of multiple genes potentially acting downstream of the TPSs, including cytochrome P450 monooxygenases, UDP-glucosyl transferases, and transcription factors strongly correlated with the herbivory-induced TPS genes. A selection of herbivory-induced TPS genes was functionally characterized through heterologous expression and the products that these enzymes catalysed matched with the volatile and non-volatile terpenoids induced in response to herbivory.


Asunto(s)
Transferasas Alquil y Aril , Capsicum , Sesquiterpenos , Tetranychidae , Animales , Terpenos/metabolismo , Herbivoria/fisiología , Capsicum/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Sesquiterpenos/metabolismo , Mentol , Alcanfor
6.
Plant Cell Physiol ; 64(9): 936-954, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37319019

RESUMEN

Root parasitic plants of the Orobanchaceae, broomrapes and witchweeds, pose a severe problem to agriculture in Europe, Asia and especially Africa. These parasites are totally dependent on their host for survival, and therefore, their germination is tightly regulated by host presence. Indeed, their seeds remain dormant in the soil until a host root is detected through compounds called germination stimulants. Strigolactones (SLs) are the most important class of germination stimulants. They play an important role in planta as a phytohormone and, upon exudation from the root, function in the recruitment of symbiotic arbuscular mycorrhizal fungi. Plants exude mixtures of various different SLs, possibly to evade detection by these parasites and still recruit symbionts. Vice versa, parasitic plants must only respond to the SL composition that is exuded by their host, or else risk germination in the presence of non-hosts. Therefore, parasitic plants have evolved an entire clade of SL receptors, called HTL/KAI2s, to perceive the SL cues. It has been demonstrated that these receptors each have a distinct sensitivity and specificity to the different known SLs, which possibly allows them to recognize the SL-blend characteristic of their host. In this review, we will discuss the molecular basis of SL sensitivity and specificity in these parasitic plants through HTL/KAI2s and review the evidence that these receptors contribute to host specificity of parasitic plants.


Asunto(s)
Micorrizas , Orobanche , Striga , Raíces de Plantas/microbiología , Especificidad del Huésped , Lactonas , Plantas , Germinación
7.
New Phytol ; 239(6): 2292-2306, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381102

RESUMEN

Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.


Asunto(s)
Diterpenos , Solanum lycopersicum , Solanum lycopersicum/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Farnesiltransferasa , Carotenoides/metabolismo , Isoformas de Proteínas , Hojas de la Planta/metabolismo
8.
Plant Physiol ; 189(2): 1139-1152, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166848

RESUMEN

The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54-0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59-0.64 versus 0.03-0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate-glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.


Asunto(s)
Sequías , Oryza , Grano Comestible , Genómica , Oryza/genética , Fitomejoramiento
9.
Plant Physiol ; 190(1): 319-339, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640120

RESUMEN

During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.


Asunto(s)
Flores , Polinización , Inflorescencia , Odorantes , Reproducción
10.
New Phytol ; 233(2): 862-877, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668204

RESUMEN

Terpenoids play important roles in flavour, pollinator attraction and defence of plants. In cucumber (Cucumis sativus) they are important components of the herbivore-induced plant volatile blend that attracts natural enemies of herbivores. We annotated the cucumber TERPENE SYNTHASE gene (CsTPS) family and characterized their involvement in the response towards herbivores with different feeding guilds using a combined molecular and biochemical approach. Transcripts of multiple CsTPS genes were upregulated in leaves upon herbivory and the products generated by the expressed proteins match the terpenoids recorded in the volatile blend released by herbivore-damaged leaves. Spatial and temporal analysis of the promoter activity of CsTPS genes showed that cell content-feeding spider mites (Tetranychus urticae) and thrips (Frankliniella occidentalis) induced promoter activity of CsTPS9 and CsTPS19 within hours after initiation of infestation, while phloem-feeding aphids (Myzus persicae) induced CsTPS2 promoter activity. Our findings offer detailed insights into the involvement of the TPS gene family in the dynamics and fine-tuning of the emission of herbivore-induced plant volatiles in cucumber, and open a new avenue to understand molecular mechanisms that affect plant-herbivore interactions.


Asunto(s)
Transferasas Alquil y Aril , Cucumis sativus , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Animales , Cucumis sativus/genética , Cucumis sativus/metabolismo , Herbivoria/fisiología , Terpenos/metabolismo
11.
New Phytol ; 235(5): 1884-1899, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35612785

RESUMEN

Strigolactones (SLs) are rhizosphere signalling molecules and phytohormones. The biosynthetic pathway of SLs in tomato has been partially elucidated, but the structural diversity in tomato SLs predicts that additional biosynthetic steps are required. Here, root RNA-seq data and co-expression analysis were used for SL biosynthetic gene discovery. This strategy resulted in a candidate gene list containing several cytochrome P450s. Heterologous expression in Nicotiana benthamiana and yeast showed that one of these, CYP712G1, can catalyse the double oxidation of orobanchol, resulting in the formation of three didehydro-orobanchol (DDH) isomers. Virus-induced gene silencing and heterologous expression in yeast showed that one of these DDH isomers is converted to solanacol, one of the most abundant SLs in tomato root exudate. Protein modelling and substrate docking analysis suggest that hydroxy-orbanchol is the likely intermediate in the conversion from orobanchol to the DDH isomers. Phylogenetic analysis demonstrated the occurrence of CYP712G1 homologues in the Eudicots only, which fits with the reports on DDH isomers in that clade. Protein modelling and orobanchol docking of the putative tobacco CYP712G1 homologue suggest that it can convert orobanchol to similar DDH isomers as tomato.


Asunto(s)
Solanum lycopersicum , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Compuestos Heterocíclicos con 3 Anillos , Lactonas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Rizosfera , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
12.
Plant Physiol ; 185(4): 1292-1308, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793901

RESUMEN

Parasitic plants are plants that connect with a haustorium to the vasculature of another, host, plant from which they absorb water, assimilates, and nutrients. Because of this parasitic lifestyle, parasitic plants need to coordinate their lifecycle with that of their host. Parasitic plants have evolved a number of host detection/host response mechanisms of which the germination in response to chemical host signals in one of the major families of parasitic plants, the Orobanchaceae, is a striking example. In this update review, we discuss these germination stimulants. We review the different compound classes that function as germination stimulants, how they are produced, and in which host plants. We discuss why they are reliable signals, how parasitic plants have evolved mechanisms that detect and respond to them, and whether they play a role in host specificity. The advances in the knowledge underlying this signaling relationship between host and parasitic plant have greatly improved our understanding of the evolution of plant parasitism and are facilitating the development of more effective control measures in cases where these parasitic plants have developed into weeds.


Asunto(s)
Germinación/fisiología , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/fisiología , Orobanchaceae/fisiología , Orobanchaceae/parasitología , Reguladores del Crecimiento de las Plantas/fisiología , Transducción de Señal/fisiología
13.
PLoS Comput Biol ; 17(3): e1008197, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33750949

RESUMEN

Sesquiterpene synthases (STSs) catalyze the formation of a large class of plant volatiles called sesquiterpenes. While thousands of putative STS sequences from diverse plant species are available, only a small number of them have been functionally characterized. Sequence identity-based screening for desired enzymes, often used in biotechnological applications, is difficult to apply here as STS sequence similarity is strongly affected by species. This calls for more sophisticated computational methods for functionality prediction. We investigate the specificity of precursor cation formation in these elusive enzymes. By inspecting multi-product STSs, we demonstrate that STSs have a strong selectivity towards one precursor cation. We use a machine learning approach combining sequence and structure information to accurately predict precursor cation specificity for STSs across all plant species. We combine this with a co-evolutionary analysis on the wealth of uncharacterized putative STS sequences, to pinpoint residues and distant functional contacts influencing cation formation and reaction pathway selection. These structural factors can be used to predict and engineer enzymes with specific functions, as we demonstrate by predicting and characterizing two novel STSs from Citrus bergamia.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Evolución Molecular , Aprendizaje Automático , Plantas/enzimología , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Cationes , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
14.
Plant Cell Physiol ; 62(6): 959-970, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34037236

RESUMEN

Most land plants entertain a mutualistic symbiosis known as arbuscular mycorrhiza with fungi (Glomeromycota) that provide them with essential mineral nutrients, in particular phosphate (Pi), and protect them from biotic and abiotic stress. Arbuscular mycorrhizal (AM) symbiosis increases plant productivity and biodiversity and is therefore relevant for both natural plant communities and crop production. However, AM fungal populations suffer from intense farming practices in agricultural soils, in particular Pi fertilization. The dilemma between natural fertilization from AM symbiosis and chemical fertilization has raised major concern and emphasizes the need to better understand the mechanisms by which Pi suppresses AM symbiosis. Here, we test the hypothesis that Pi may interfere with AM symbiosis via the phytohormone gibberellic acid (GA) in the Solanaceous model systems Petunia hybrida and Nicotiana tabacum. Indeed, we find that GA is inhibitory to AM symbiosis and that Pi may cause GA levels to increase in mycorrhizal roots. Consistent with a role of endogenous GA as an inhibitor of AM development, GA-defective N. tabacum lines expressing a GA-metabolizing enzyme (GA methyltransferase-GAMT) are colonized more quickly by the AM fungus Rhizoglomus irregulare, and exogenous Pi is less effective in inhibiting AM colonization in these lines. Systematic gene expression analysis of GA-related genes reveals a complex picture, in which GA degradation by GA2 oxidase plays a prominent role. These findings reveal potential targets for crop breeding that could reduce Pi suppression of AM symbiosis, thereby reconciling the advantages of Pi fertilization with the diverse benefits of AM symbiosis.


Asunto(s)
Giberelinas/metabolismo , Micorrizas/fisiología , Nicotiana/fisiología , Petunia/fisiología , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Transducción de Señal , Simbiosis
15.
BMC Plant Biol ; 21(1): 349, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301182

RESUMEN

BACKGROUND: Phosphorus (P) is an essential macronutrient for plant growth and development. Upon P shortage, plant responds with massive reprogramming of transcription, the Phosphate Starvation Response (PSR). In parallel, the production of strigolactones (SLs)-a class of plant hormones that regulates plant development and rhizosphere signaling molecules-increases. It is unclear, however, what the functional link is between these two processes. In this study, using tomato as a model, RNAseq was used to evaluate the time-resolved changes in gene expression in the roots upon P starvation and, using a tomato CAROTENOID CLEAVAGE DIOXYGENASES 8 (CCD8) RNAi line, what the role of SLs is in this. RESULTS: Gene ontology (GO)-term enrichment and KEGG analysis of the genes regulated by P starvation and P replenishment revealed that metabolism is an important component of the P starvation response that is aimed at P homeostasis, with large changes occurring in glyco-and galactolipid and carbohydrate metabolism, biosynthesis of secondary metabolites, including terpenoids and polyketides, glycan biosynthesis and metabolism, and amino acid metabolism. In the CCD8 RNAi line about 96% of the PSR genes was less affected than in wild-type (WT) tomato. For example, phospholipid biosynthesis was suppressed by P starvation, while the degradation of phospholipids and biosynthesis of substitute lipids such as sulfolipids and galactolipids were induced by P starvation. Around two thirds of the corresponding transcriptional changes depend on the presence of SLs. Other biosynthesis pathways are also reprogrammed under P starvation, such as phenylpropanoid and carotenoid biosynthesis, pantothenate and CoA, lysine and alkaloids, and this also partially depends on SLs. Additionally, some plant hormone biosynthetic pathways were affected by P starvation and also here, SLs are required for many of the changes (more than two thirds for Gibberellins and around one third for Abscisic acid) in the gene expression. CONCLUSIONS: Our analysis shows that SLs are not just the end product of the PSR in plants (the signals secreted by plants into the rhizosphere), but also play a major role in the regulation of the PSR (as plant hormone).


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Fósforo/deficiencia , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Variación Genética , Genotipo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo
16.
Planta ; 253(2): 54, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33521891

RESUMEN

MAIN CONCLUSION: The sunflower sesquiterpene lactones 8-epixanthatin and tomentosin can bind to the hydrophobic pocket of sunflower KAI2 with an affinity much higher than for the exogenous ligand KAR. Sesquiterpene lactones (STLs) are secondary plant metabolites with a wide range of biological, such as anti-microbial, activities. Intriguingly, the STLs have also been implicated in plant development: in several Asteraceae, STL levels correlate with the photo-inhibition of hypocotyl elongation. Although this effect was suggested to be due to auxin transport inhibition, there is no structural-functional evidence for this claim. Intriguingly, the light-induced inhibition of hypocotyl elongation in Arabidopsis has been ascribed to HYPOSENSITIVE TO LIGHT/KARRIKIN-INSENSITIVE2 (HTL/KAI2) signaling. KAI2 was discovered because of its affinity to the smoke-derived karrikin (KAR), though it is generally assumed that KAI2 has another, endogenous but so far elusive, ligand rather than the exogenous KARs. Here, we postulate that the effect of STLs on hypocotyl elongation is mediated through KAI2 signaling. To support this hypothesis, we have generated homology models of the sunflower KAI2s (HaKAI2s) and used them for molecular docking studies with STLs. Our results show that particularly two sunflower STLs, 8-epixanthatin and tomentosin, can bind to the hydrophobic pockets of HaKAI2s with high affinity. Our results are in line with a recent study, showing that these two STLs accumulate in the light-exposed hypocotyls of sunflower. This finding sheds light on the effect of STLs in hypocotyl elongation that has been reported for many decades but without conclusive insight in the elusive mechanism underlying this effect.


Asunto(s)
Proteínas de Arabidopsis , Sesquiterpenos , Hidrolasas , Lactonas , Ligandos , Simulación del Acoplamiento Molecular
17.
Planta ; 254(6): 112, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727239

RESUMEN

MAIN CONCLUSION: Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity. Potato cyst nematode (PCN) is a plant root sedentary endoparasite, specialized in the infection of solanaceous species such as potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Earlier reports (Mulder et al. in Hatching agent for the potato cyst nematode, Patent application No. PCT/NL92/00126, 1996; Schenk et al. in Croat Chem Acta 72:593-606, 1999) showed that solanoeclepin A (SolA), a triterpenoid metabolite that was isolated from the root exudate of potato, induces the hatching of PCN. Its low concentration in potato root exudate has hindered progress in fully understanding its hatching inducing activity and exploitation in the control of PCN. To further investigate the role of SolA in hatching of PCN, the establishment of a highly sensitive analytical method is a prerequisite. Here we present the efficient single-step extraction and UHPLC-MS/MS based analysis for rapid determination of SolA in sub-nanomolar concentrations in tomato root exudate. This method was used to analyze SolA production in different tomato cultivars and related solanaceous species, including the trap crop Solanum sisymbriifolium. Hatching assays with PCN, Globodera pallida, with root exudates of tomato genotypes revealed a significant positive correlation between SolA concentration and hatching activity. Our results demonstrate that there is natural variation in SolA production within solanaceous species and that this has an effect on PCN hatching. The analytical method we have developed can potentially be used to support breeding for crop genotypes that induce less hatching and may therefore display reduced infection by PCN.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Hexanos/química , Enfermedades de las Plantas/parasitología , Solanum tuberosum , Tylenchoidea , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Exudados y Transudados , Fitomejoramiento , Raíces de Plantas/química , Solanum tuberosum/química , Espectrometría de Masas en Tándem , Tylenchoidea/patogenicidad
18.
Planta ; 254(1): 13, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34173050

RESUMEN

MAIN CONCLUSIONS: Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.


Asunto(s)
Oryza , Adaptación Fisiológica , Antioxidantes , Sequías , Fitomejoramiento
19.
J Exp Bot ; 72(22): 7970-7983, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34410382

RESUMEN

Two sorghum varieties, Shanqui Red (SQR) and SRN39, have distinct levels of susceptibility to the parasitic weed Striga hermonthica, which have been attributed to different strigolactone composition within their root exudates. Root exudates of the Striga-susceptible variety Shanqui Red (SQR) contain primarily 5-deoxystrigol, which has a high efficiency for inducing Striga germination. SRN39 roots primarily exude orobanchol, leading to reduced Striga germination and making this variety resistant to Striga. The structural diversity in exuded strigolactones is determined by a polymorphism in the LOW GERMINATION STIMULANT 1 (LGS1) locus. Yet, the genetic diversity between SQR and SRN39 is broad and has not been addressed in terms of growth and development. Here, we demonstrate additional differences between SQR and SRN39 by phenotypic and molecular characterization. A suite of genes related to metabolism was differentially expressed between SQR and SRN39. Increased levels of gibberellin precursors in SRN39 were accompanied by slower growth rate and developmental delay and we observed an overall increased SRN39 biomass. The slow-down in growth and differences in transcriptome profiles of SRN39 were strongly associated with plant age. Additionally, enhanced lateral root growth was observed in SRN39 and three additional genotypes exuding primarily orobanchol. In summary, we demonstrate that the differences between SQR and SRN39 reach further than the changes in strigolactone profile in the root exudate and translate into alterations in growth and development.


Asunto(s)
Sorghum , Striga , Genotipo , Germinación , Lactonas , Raíces de Plantas/genética , Malezas , Sorghum/genética
20.
J Exp Bot ; 72(15): 5462-5477, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33970249

RESUMEN

Flower sepals are critical for flower development and vary greatly in life span depending on their function post-pollination. Very little is known about what controls sepal longevity. Using a sepal senescence mutant screen, we identified two Arabidopsis mutants with delayed senescence directly connecting strigolactones with senescence regulation in a novel floral context that hitherto has not been explored. The mutations were in the strigolactone biosynthetic gene MORE AXILLARY GROWTH1 (MAX1) and in the strigolactone receptor gene DWARF14 (AtD14). The mutation in AtD14 changed the catalytic Ser97 to Phe in the enzyme active site, which is the first mutation of its kind in planta. The lesion in MAX1 was in the haem-iron ligand signature of the cytochrome P450 protein, converting the highly conserved Gly469 to Arg, which was shown in a transient expression assay to substantially inhibit the activity of MAX1. The two mutations highlighted the importance of strigolactone activity for driving to completion senescence initiated both developmentally and in response to carbon-limiting stress, as has been found for the more well-known senescence-associated regulators ethylene and abscisic acid. Analysis of transcript abundance in excised inflorescences during an extended night suggested an intricate relationship among sugar starvation, senescence, and strigolactone biosynthesis and signalling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Reguladores del Crecimiento de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA