Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Ann Neurol ; 95(2): 211-216, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110839

RESUMEN

OBJECTIVE: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use. METHODS: Consensus discussion among academic, industry, and patient advocacy group representatives. RESULTS: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit. INTERPRETATION: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Superóxido Dismutasa-1 , Filamentos Intermedios , Biomarcadores , Pronóstico , Proteínas de Neurofilamentos
2.
Muscle Nerve ; 69(6): 719-729, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593477

RESUMEN

INTRODUCTION/AIMS: Biomarkers have shown promise in amyotrophic lateral sclerosis (ALS) research, but the quest for reliable biomarkers remains active. This study evaluates the effect of debamestrocel on cerebrospinal fluid (CSF) biomarkers, an exploratory endpoint. METHODS: A total of 196 participants randomly received debamestrocel or placebo. Seven CSF samples were to be collected from all participants. Forty-five biomarkers were analyzed in the overall study and by two subgroups characterized by the ALS Functional Rating Scale-Revised (ALSFRS-R). A prespecified model was employed to predict clinical outcomes leveraging biomarkers and disease characteristics. Causal inference was used to analyze relationships between neurofilament light chain (NfL) and ALSFRS-R. RESULTS: We observed significant changes with debamestrocel in 64% of the biomarkers studied, spanning pathways implicated in ALS pathology (63% neuroinflammation, 50% neurodegeneration, and 89% neuroprotection). Biomarker changes with debamestrocel show biological activity in trial participants, including those with advanced ALS. CSF biomarkers were predictive of clinical outcomes in debamestrocel-treated participants (baseline NfL, baseline latency-associated peptide/transforming growth factor beta1 [LAP/TGFß1], change galectin-1, all p < .01), with baseline NfL and LAP/TGFß1 remaining (p < .05) when disease characteristics (p < .005) were incorporated. Change from baseline to the last measurement showed debamestrocel-driven reductions in NfL were associated with less decline in ALSFRS-R. Debamestrocel significantly reduced NfL from baseline compared with placebo (11% vs. 1.6%, p = .037). DISCUSSION: Following debamestrocel treatment, many biomarkers showed increases (anti-inflammatory/neuroprotective) or decreases (inflammatory/neurodegenerative) suggesting a possible treatment effect. Neuroinflammatory and neuroprotective biomarkers were predictive of clinical response, suggesting a potential multimodal mechanism of action. These results offer preliminary insights that need to be confirmed.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Proteínas de Neurofilamentos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Método Doble Ciego , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Resultado del Tratamiento
3.
Eur J Neurol ; 31(4): e16206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270442

RESUMEN

BACKGROUND: Alpha-synuclein (α-Syn) oligomers and fibrils have been shown to augment the aggregation of TAR DNA-binding Protein 43 (TDP-43) monomers in vitro, supporting the idea that TDP-43 proteinopathies such as ALS may be modulated by the presence of toxic forms of α-Syn. Recently, parkinsonian features were reported in a study of European patients and Lewy bodies have been demonstrated pathologically in a similar series of patients. Based on these and other considerations, we sought to determine whether seed-competent α-Syn can be identified in spinal fluid of patients with ALS including familial, sporadic, and Guamanian forms of the disease. METHODS: Based on the finding that α-Syn has been found to be a prion-like protein, we have utilized a validated α-Synuclein seed amplification assay to determine if seed-competent α-Syn could be detected in the spinal fluid of patients with ALS. RESULTS: Toxic species of α-Syn were detected in CSF in 18 of 127 ALS patients, 5 of whom were from Guam. Two out of twenty six samples from patients with C9orf72 variant ALS had positive seed-amplification assays (SAAs). No positive tests were noted in superoxide dismutase type 1 ALS subjects (n = 14). The SAA was negative in 31 control subjects. CONCLUSIONS: Our findings suggest that a sub-group of ALS occurs in which self-replicating α-Syn is detectable and likely contributes to its pathogenesis. This finding may have implications for the diagnosis and treatment of this disorder.


Asunto(s)
Esclerosis Amiotrófica Lateral , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Esclerosis Amiotrófica Lateral/patología , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Superóxido Dismutasa-1
4.
Biochem Biophys Res Commun ; 645: 164-172, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36689813

RESUMEN

Matrin 3 is a nuclear matrix protein that has many roles in RNA processing including splicing and transport of mRNA. Many missense mutations in the Matrin 3 gene (MATR3) have been linked to familial forms of amyotrophic lateral sclerosis (ALS) and distal myopathy. However, the exact role of MATR3 mutations in ALS and myopathy pathogenesis is not understood. To demonstrate a role of MATR3 mutations in vivo, we generated a novel CRISPR/Cas9 mediated knock-in mouse model harboring the MATR3 P154S mutation expressed under the control of the endogenous promoter. The P154S variant of the MATR3 gene has been linked to familial forms of ALS. Heterozygous and homozygous MATR3 P154S knock-in mice did not develop progressive motor deficits compared to wild-type mice. In addition, ALS-like pathology did not develop in nervous or muscle tissue in either heterozygous or homozygous mice. Our results suggest that the MATR3 P154S variant is not sufficient to produce ALS-like pathology in vivo.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas Asociadas a Matriz Nuclear , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Músculos/metabolismo , Enfermedades Musculares/genética , Mutación , Mutación Missense , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-38050066

RESUMEN

BACKGROUND: An oral sodium phenylbutyrate and taurursodiol combination (PB and TURSO) significantly reduced functional decline in people living with amyotrophic lateral sclerosis (ALS) in the CENTAUR trial. Biomarkers linking clinical therapeutic effect with biological changes are of high interest in ALS. We performed analyses of neuroinflammatory biomarkers associated with ALS in the literature, including YKL-40 (also known as chitinase-3-like protein 1), chitinase 1 (CHIT1) and C reactive protein (CRP), in plasma samples collected in CENTAUR. METHODS: Log10-transformed plasma biomarker measurements were analysed using a linear mixed-effects model. Correlation between paired biomarker concentrations and ALS Functional Rating Scale-Revised (ALSFRS-R) total scores was assessed via Pearson correlation coefficients. RESULTS: By week 24, geometric least squares mean YKL-40 plasma concentration decreased by approximately 20% (p=0.008) and CRP by 30% (p=0.048) in the PB and TURSO versus placebo group. YKL-40 (r of -0.21; p<0.0001) and CRP (r of -0.19; p=0.0002) concentration correlated with ALSFRS-R total score. CHIT1 levels were not significantly different between groups. CONCLUSIONS: YKL-40 and CRP plasma levels were significantly reduced in participants with ALS receiving PB and TURSO in CENTAUR and correlated with disease progression. These findings suggest YKL-40 and CRP could be treatment-sensitive biomarkers in ALS, pending further confirmatory studies. TRIAL REGISTRATION NUMBER: https://clinicaltrials.gov/study/NCT03127514.

6.
Alzheimers Dement ; 19(8): 3537-3554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36825691

RESUMEN

The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Proteómica , Envejecimiento , Inflamación
7.
J Proteome Res ; 20(6): 3165-3178, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33939924

RESUMEN

Cytoplasmic stress granules (SGs) are dynamic foci containing translationally arrested mRNA and RNA-binding proteins (RBPs) that form in response to a variety of cellular stressors. It has been debated that SGs may evolve into cytoplasmic inclusions observed in many neurodegenerative diseases. Recent studies have examined the SG proteome by interrogating the interactome of G3BP1. However, it is widely accepted that multiple baits are required to capture the full SG proteome. To gain further insight into the SG proteome, we employed immunoprecipitation coupled with mass spectrometry of endogenous Caprin-1, an RBP implicated in mRNP granules. Overall, we identified 1543 proteins that interact with Caprin-1. Interactors under stressed conditions were primarily annotated to the ribosome, spliceosome, and RNA transport pathways. We validated four Caprin-1 interactors that localized to arsenite-induced SGs: ANKHD1, TALIN-1, GEMIN5, and SNRNP200. We also validated these stress-induced interactions in SH-SY5Y cells and further determined that SNRNP200 also associated with osmotic- and thermal-induced SGs. Finally, we identified SNRNP200 in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) spinal cord and motor cortex. Collectively, our findings provide the first description of the Caprin-1 protein interactome, identify novel cytoplasmic SG components, and reveal a SG protein in cytoplasmic aggregates in ALS patient neurons. Proteomic data collected in this study are available via ProteomeXchange with identifier PXD023271.


Asunto(s)
Gránulos Citoplasmáticos , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteómica , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/genética
8.
Neurobiol Dis ; 149: 105228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33359139

RESUMEN

Disruption in copper homeostasis causes a number of cognitive and motor deficits. Wilson's disease and Menkes disease are neurodevelopmental disorders resulting from mutations in the copper transporters ATP7A and ATP7B, with ATP7A mutations also causing occipital horn syndrome, and distal motor neuropathy. A 65 year old male presenting with brachial amyotrophic diplegia and diagnosed with amyotrophic lateral sclerosis (ALS) was found to harbor a p.Met1311Val (M1311V) substitution variant in ATP7A. ALS is a fatal neurodegenerative disease associated with progressive muscle weakness, synaptic deficits and degeneration of upper and lower motor neurons. To investigate the potential contribution of the ATP7AM1311V variant to neurodegeneration, we obtained and characterized both patient-derived fibroblasts and patient-derived induced pluripotent stem cells differentiated into motor neurons (iPSC-MNs), and compared them to control cell lines. We found reduced localization of ATP7AM1311V to the trans-Golgi network (TGN) at basal copper levels in patient-derived fibroblasts and iPSC-MNs. In addition, redistribution of ATP7AM1311V out of the TGN in response to increased extracellular copper was defective in patient fibroblasts. This manifested in enhanced intracellular copper accumulation and reduced survival of ATP7AM1311V fibroblasts. iPSC-MNs harboring the ATP7AM1311V variant showed decreased dendritic complexity, aberrant spontaneous firing, and decreased survival. Finally, expression of the ATP7AM1311V variant in Drosophila motor neurons resulted in motor deficits. Apilimod, a drug that targets vesicular transport and recently shown to enhance survival of C9orf72-ALS/FTD iPSC-MNs, also increased survival of ATP7AM1311V iPSC-MNs and reduced motor deficits in Drosophila expressing ATP7AM1311V. Taken together, these observations suggest that ATP7AM1311V negatively impacts its role as a copper transporter and impairs several aspects of motor neuron function and morphology.


Asunto(s)
ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Variación Genética/fisiología , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Células Cultivadas , Cobre/farmacología , Cobre/uso terapéutico , Relación Dosis-Respuesta a Droga , Drosophila , Variación Genética/efectos de los fármacos , Células HeLa , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Enfermedad de la Neurona Motora/tratamiento farmacológico , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
9.
Expert Rev Proteomics ; 18(11): 977-994, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758687

RESUMEN

INTRODUCTION: Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED: The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION: Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Biomarcadores , Humanos , Proteómica
10.
Muscle Nerve ; 64(3): 309-320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34075589

RESUMEN

INTRODUCTION/AIMS: We tested safety, tolerability, and target engagement of tocilizumab in amyotrophic lateral sclerosis (ALS) patients. METHODS: Twenty-two participants, whose peripheral blood mononuclear cell (PBMC) gene expression profile reflected high messenger ribonucleic acid (mRNA) expression of inflammatory markers, were randomized 2:1 to three tocilizumab or placebo treatments (weeks 0, 4, and 8; 8 mg/kg intravenous). Participants were followed every 4 wk in a double-blind fashion for 16 wk and assessed for safety, tolerability, plasma inflammatory markers, and clinical measures. Cerebrospinal fluid (CSF) was collected at baseline and after the third treatment. Participants were genotyped for Asp358 Ala polymorphism of the interleukin 6 receptor (IL-6R) gene. RESULTS: Baseline characteristics, safety, and tolerability were similar between treatment groups. One serious adverse event was reported in the placebo group; no deaths occurred. Mean plasma C-reactive protein (CRP) level decreased by 88% in the tocilizumab group and increased by 4% in the placebo group (-3.0-fold relative change, P < .001). CSF CRP reduction (-1.8-fold relative change, P = .01) was associated with IL-6R C allele count. No differences in PBMC gene expression or clinical measures were observed between groups. DISCUSSION: Tocilizumab treatment was safe and well tolerated. PBMC gene expression profile was inadequate as a predictive or pharmacodynamic biomarker. Treatment reduced CRP levels in plasma and CSF, with CSF effects potentially dependent on IL-6R Asp358 Ala genotype. IL-6 trans-signaling may mediate a distinct central nervous system response in individuals inheriting the IL-6R C allele. These results warrant further study in ALS patients where IL-6R genotype and CRP levels may be useful enrichment biomarkers.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Adolescente , Adulto , Anciano , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven
11.
J Neurol Neurosurg Psychiatry ; 91(4): 350-358, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31937582

RESUMEN

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a complex disease with numerous pathological mechanisms resulting in a heterogeneous patient population. Using biomarkers for particular disease mechanisms may enrich a homogeneous subset of patients. In this study, we quantified chitotriosidase (Chit-1) and chitinase-3-like protein 1 (CHI3L1), markers of glial activation, in cerebrospinal fluid (CSF) and plasma and determined the cell types that express CHI3L1 in ALS. METHODS: Immunoassays were used to quantify Chit-1, CHI3L1 and phosphorylated neurofilament heavy chain levels in longitudinal CSF and matching plasma samples from 118 patients with ALS, 17 disease controls (DCs), and 24 healthy controls (HCs). Immunostaining was performed to identify and quantify CHI3L1-positive cells in tissue sections from ALS, DCs and non-neurological DCs. RESULTS: CSF Chit-1 exhibited increased levels in ALS as compared with DCs and HCs. CSF CHI3L1 levels were increased in ALS and DCs compared with HCs. No quantitative differences were noted in plasma for either chitinase. Patients with ALS with fast-progressing disease exhibited higher levels of CSF Chit-1 and CHI3L1 than patients with slow-progressing disease. Increased numbers of CHI3L1-positive cells were observed in postmortem ALS motor cortex as compared with controls, and these cells were identified as a subset of activated astrocytes located predominately in the white matter of the motor cortex and the spinal cord. CONCLUSIONS: CSF Chit-1 and CHI3L1 are significantly increased in ALS, and CSF Chit-1 and CHI3L1 levels correlate to the rate of disease progression. CHI3L1 is expressed by a subset of activated astrocytes predominately located in white matter.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/metabolismo , Proteína 1 Similar a Quitinasa-3/metabolismo , Hexosaminidasas/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3/sangre , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Estudios Transversales , Femenino , Hexosaminidasas/sangre , Hexosaminidasas/líquido cefalorraquídeo , Humanos , Masculino , Persona de Mediana Edad
12.
Acta Neuropathol ; 135(2): 227-247, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29134320

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with no effective treatments. Numerous RNA-binding proteins (RBPs) have been shown to be altered in ALS, with mutations in 11 RBPs causing familial forms of the disease, and 6 more RBPs showing abnormal expression/distribution in ALS albeit without any known mutations. RBP dysregulation is widely accepted as a contributing factor in ALS pathobiology. There are at least 1542 RBPs in the human genome; therefore, other unidentified RBPs may also be linked to the pathogenesis of ALS. We used IBM Watson® to sieve through all RBPs in the genome and identify new RBPs linked to ALS (ALS-RBPs). IBM Watson extracted features from published literature to create semantic similarities and identify new connections between entities of interest. IBM Watson analyzed all published abstracts of previously known ALS-RBPs, and applied that text-based knowledge to all RBPs in the genome, ranking them by semantic similarity to the known set. We then validated the Watson top-ten-ranked RBPs at the protein and RNA levels in tissues from ALS and non-neurological disease controls, as well as in patient-derived induced pluripotent stem cells. 5 RBPs previously unlinked to ALS, hnRNPU, Syncrip, RBMS3, Caprin-1 and NUPL2, showed significant alterations in ALS compared to controls. Overall, we successfully used IBM Watson to help identify additional RBPs altered in ALS, highlighting the use of artificial intelligence tools to accelerate scientific discovery in ALS and possibly other complex neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Inteligencia Artificial , Biología Computacional/métodos , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Cerebelo/metabolismo , Biología Computacional/instrumentación , Minería de Datos , Expresión Génica , Humanos , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Estudios Retrospectivos , Comunicación Académica , Médula Espinal/metabolismo
14.
Brain ; 139(Pt 4): 1094-105, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26912636

RESUMEN

Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer ß-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Axones/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Proteínas del Citoesqueleto/deficiencia , Recuperación de la Función/fisiología , Péptidos beta-Amiloides/metabolismo , Animales , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
15.
Proc Natl Acad Sci U S A ; 110(10): 4069-74, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431168

RESUMEN

Glial reaction is a common feature of neurodegenerative diseases. Recent studies have suggested that reactive astrocytes gain neurotoxic properties, but exactly how reactive astrocytes contribute to neurotoxicity remains to be determined. Here, we identify lipocalin 2 (lcn2) as an inducible factor that is secreted by reactive astrocytes and that is selectively toxic to neurons. We show that lcn2 is induced in reactive astrocytes in transgenic rats with neuronal expression of mutant human TAR DNA-binding protein 43 (TDP-43) or RNA-binding protein fused in sarcoma (FUS). Therefore, lcn2 is induced in activated astrocytes in response to neurodegeneration, but its induction is independent of TDP-43 or FUS expression in astrocytes. We found that synthetic lcn2 is cytotoxic to primary neurons in a dose-dependent manner, but is innocuous to astrocytes, microglia, and oligodendrocytes. Lcn2 toxicity is increased in neurons that express a disease gene, such as mutant FUS or TDP-43. Conditioned medium from rat brain slice cultures with neuronal expression of mutant TDP-43 contains abundant lcn2 and is toxic to primary neurons as well as neurons in cultured brain slice from WT rats. Partial depletion of lcn2 by immunoprecipitation reduced conditioned medium-mediated neurotoxicity. Our data indicate that reactive astrocytes secrete lcn2, which is a potent neurotoxic mediator.


Asunto(s)
Astrocitos/fisiología , Lipocalinas/metabolismo , Neuronas/patología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Medios de Cultivo Condicionados , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/fisiopatología , Humanos , Lipocalina 2 , Lipocalinas/genética , Lipocalinas/fisiología , Lipocalinas/toxicidad , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/efectos de los fármacos , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
16.
Int J Mol Sci ; 17(11)2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27809276

RESUMEN

Carbonic anhydrase I (CA1) is the cytosolic isoform of mammalian α-CA family members which are responsible for maintaining pH homeostasis in the physiology and pathology of organisms. A subset of CA isoforms are known to be expressed and function in the central nervous system (CNS). CA1 has not been extensively characterized in the CNS. In this study, we demonstrate that CA1 is expressed in the motor neurons in human spinal cord. Unexpectedly, a subpopulation of CA1 appears to be associated with endoplasmic reticulum (ER) membranes. In addition, the membrane-associated CA1s are preferentially upregulated in amyotrophic lateral sclerosis (ALS) and exhibit altered distribution in motor neurons. Furthermore, long-term expression of CA1 in mammalian cells activates apoptosis. Our results suggest a previously unknown role for CA1 function in the CNS and its potential involvement in motor neuron degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Anhidrasa Carbónica I/metabolismo , Neuronas Motoras/enzimología , Médula Espinal/enzimología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/patología , Autopsia , Western Blotting , Supervivencia Celular , Retículo Endoplásmico/enzimología , Femenino , Células HEK293 , Humanos , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Adulto Joven
17.
J Neurosci ; 34(48): 15962-74, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25429138

RESUMEN

TDP-43 is an RNA-binding protein linked to amyotrophic lateral sclerosis (ALS) that is known to regulate the splicing, transport, and storage of specific mRNAs into stress granules. Although TDP-43 has been shown to interact with translation factors, its role in protein synthesis remains unclear, and no in vivo translation targets have been reported to date. Here we provide evidence that TDP-43 associates with futsch mRNA in a complex and regulates its expression at the neuromuscular junction (NMJ) in Drosophila. In the context of TDP-43-induced proteinopathy, there is a significant reduction of futsch mRNA at the NMJ compared with motor neuron cell bodies where we find higher levels of transcript compared with controls. TDP-43 also leads to a significant reduction in Futsch protein expression at the NMJ. Polysome fractionations coupled with quantitative PCR experiments indicate that TDP-43 leads to a futsch mRNA shift from actively translating polysomes to nontranslating ribonuclear protein particles, suggesting that in addition to its effect on localization, TDP-43 also regulates the translation of futsch mRNA. We also show that futsch overexpression is neuroprotective by extending life span, reducing TDP-43 aggregation, and suppressing ALS-like locomotor dysfunction as well as NMJ abnormalities linked to microtubule and synaptic stabilization. Furthermore, the localization of MAP1B, the mammalian homolog of Futsch, is altered in ALS spinal cords in a manner similar to our observations in Drosophila motor neurons. Together, our results suggest a microtubule-dependent mechanism in motor neuron disease caused by TDP-43-dependent alterations in futsch mRNA localization and translation in vivo.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/genética , ARN Mensajero/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/biosíntesis , Drosophila , Proteínas de Drosophila/biosíntesis , Femenino , Marcación de Gen/métodos , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Persona de Mediana Edad , ARN Mensajero/biosíntesis
18.
J Proteome Res ; 14(11): 4486-501, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26401960

RESUMEN

Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Esclerosis Amiotrófica Lateral/diagnóstico , Proteínas del Líquido Cefalorraquídeo/aislamiento & purificación , Enfermedad de la Neurona Motora/diagnóstico , Proteoma/aislamiento & purificación , Proteínas Adaptadoras Transductoras de Señales/líquido cefalorraquídeo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/aislamiento & purificación , Adulto , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/aislamiento & purificación , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Biomarcadores/líquido cefalorraquídeo , Proteínas de Unión al Calcio/líquido cefalorraquídeo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/aislamiento & purificación , Estudios de Casos y Controles , Moléculas de Adhesión Celular/líquido cefalorraquídeo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/aislamiento & purificación , Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo/genética , Cromatografía Liquida/métodos , Diagnóstico Diferencial , Matriz Extracelular/química , Proteínas de la Matriz Extracelular/líquido cefalorraquídeo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/aislamiento & purificación , Humanos , Inmunoglobulinas/líquido cefalorraquídeo , Inmunoglobulinas/genética , Inmunoglobulinas/aislamiento & purificación , Inflamación , Persona de Mediana Edad , Enfermedad de la Neurona Motora/líquido cefalorraquídeo , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica , Espectrometría de Masas en Tándem/métodos
19.
Hepatology ; 59(5): 2010-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24122846

RESUMEN

UNLABELLED: Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF), is known to function as a potent antiapoptotic mediator in normal and neoplastic cells. Herein we report that the intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of caspase-3 cleavage sites, which bait, trap, and disable the active site of caspase-3, thereby blocking the execution of apoptosis. We call this caspase-3 cleavage motif the Death Defying Domain (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by caspase-3 the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of caspase-3 activity. By gain- and loss-of-function studies using restoration of DDD expression in DDD-deficient hepatocytic cells, we found that both caspase-3 sites in DDD are necessary for inhibition of caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met's enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. CONCLUSION: Met can directly inhibit caspase-3 by way of a novel mechanism and promote hepatocyte survival. The results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play.


Asunto(s)
Apoptosis , Caspasa 3/química , Hepatocitos/fisiología , Proteínas Proto-Oncogénicas c-met/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caspasa 3/fisiología , Inhibidores de Caspasas/farmacología , Citoprotección , Humanos , Ratones , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-met/química
20.
Mult Scler ; 20(12): 1560-3, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24557857

RESUMEN

The advancement of knowledge relies on scientific investigations. The timing between asking a question and data collection defines if a study is prospective or retrospective. Prospective studies look forward from a point in time, are less prone to bias and are considered superior to retrospective studies. This conceptual framework conflicts with the nature of biomarker research. New candidate biomarkers are discovered in a retrospective manner. There are neither resources nor time for prospective testing in all cases. Relevant sources for bias are not covered. Ethical questions arise through the time penalty of an overly dogmatic concept. The timing of sample collection can be separated from testing biomarkers. Therefore the moment of formulating a hypothesis may be after sample collection was completed. A conceptual framework permissive to asking research questions without the obligation to bow to the human concept of calendar time would simplify biomarker research, but will require new safeguards against bias.


Asunto(s)
Biomarcadores , Diagnóstico Precoz , Esclerosis Múltiple/diagnóstico , Estudios Prospectivos , Estudios Retrospectivos , Animales , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA