Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150623

RESUMEN

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Asunto(s)
Proteínas de la Membrana/metabolismo , Obesidad/metabolismo , Esfingolípidos/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Animales , Apoptosis , Línea Celular , Células HeLa , Humanos , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Obesidad/fisiopatología , Esfingolípidos/fisiología , Esfingosina N-Aciltransferasa/fisiología
2.
Cell ; 175(5): 1321-1335.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445039

RESUMEN

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.


Asunto(s)
Retículo Endoplásmico/metabolismo , Preferencias Alimentarias , Melanocortinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Norepinefrina/farmacología , Fosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/genética , Proteína 1 de Unión a la X-Box/genética
4.
Cell ; 165(4): 882-95, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133169

RESUMEN

High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Obesidad/fisiopatología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cognición , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Células Mieloides/metabolismo
5.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015310

RESUMEN

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación del Apetito , Glucosa/metabolismo , Resistencia a la Insulina , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Alimentaria , Ratones , Miostatina/genética , Optogenética , Transcriptoma
6.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26359991

RESUMEN

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Asunto(s)
Regulación del Apetito , Hipotálamo/metabolismo , Obesidad/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Cell ; 157(5): 1004-6, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855937

RESUMEN

Riera et al. identify a neuroendocrine circuit that controls longevity and the age-dependent onset of metabolic decline via the pain-transducing channel TRPV1. Thus, pharmacological inhibition of TRPV1 may provide a new approach to treat not only metabolic disorders but also a broader range of age-related pathologies.


Asunto(s)
Longevidad , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Animales , Femenino , Masculino
8.
Cell ; 156(3): 495-509, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24462248

RESUMEN

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Asunto(s)
Dieta Alta en Grasa , Hiperglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactancia , Obesidad/metabolismo , Animales , Axones/metabolismo , Femenino , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Embarazo , Proopiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
9.
Nat Immunol ; 16(4): 376-85, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25729921

RESUMEN

An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.


Asunto(s)
Adipocitos/inmunología , Resistencia a la Insulina/inmunología , Grasa Intraabdominal/inmunología , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Obesidad/inmunología , Adipocitos/patología , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Insulina/inmunología , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Grasa Intraabdominal/patología , Células Asesinas Naturales/patología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/inmunología , Obesidad/genética , Obesidad/patología , Transducción de Señal
10.
Nat Immunol ; 15(5): 423-30, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681566

RESUMEN

Obesity and resistance to insulin are closely associated with the development of low-grade inflammation. Interleukin 6 (IL-6) is linked to obesity-associated inflammation; however, its role in this context remains controversial. Here we found that mice with an inactivated gene encoding the IL-6Rα chain of the receptor for IL-6 in myeloid cells (Il6ra(Δmyel) mice) developed exaggerated deterioration of glucose homeostasis during diet-induced obesity, due to enhanced resistance to insulin. Tissues targeted by insulin showed increased inflammation and a shift in macrophage polarization. IL-6 induced expression of the receptor for IL-4 and augmented the response to IL-4 in macrophages in a cell-autonomous manner. Il6ra(Δmyel) mice were resistant to IL-4-mediated alternative polarization of macrophages and exhibited enhanced susceptibility to lipopolysaccharide (LPS)-induced endotoxemia. Our results identify signaling via IL-6 as an important determinant of the alternative activation of macrophages and assign an unexpected homeostatic role to IL-6 in limiting inflammation.


Asunto(s)
Endotoxemia/inmunología , Resistencia a la Insulina , Interleucina-6/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Obesidad/inmunología , Animales , Células Cultivadas , Humanos , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Interleucina-4/inmunología , Interleucina-6/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Receptores de Interleucina-6/genética , Transducción de Señal/genética
12.
Mol Cell ; 69(4): 636-647.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429926

RESUMEN

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , Ribosomas/fisiología , Estrés Fisiológico , Regiones no Traducidas 5' , Adenosina/farmacología , Animales , Células Cultivadas , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Fosforilación , ARN Mensajero/metabolismo
13.
Cell ; 142(2): 309-19, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655471

RESUMEN

Global energy balance in mammals is controlled by the actions of circulating hormones that coordinate fuel production and utilization in metabolically active tissues. Bone-derived osteocalcin, in its undercarboxylated, hormonal form, regulates fat deposition and is a potent insulin secretagogue. Here, we show that insulin receptor (IR) signaling in osteoblasts controls osteoblast development and osteocalcin expression by suppressing the Runx2 inhibitor Twist2. Mice lacking IR in osteoblasts have low circulating undercarboxylated osteocalcin and reduced bone acquisition due to decreased bone formation and deficient numbers of osteoblasts. With age, these mice develop marked peripheral adiposity and hyperglycemia accompanied by severe glucose intolerance and insulin resistance. The metabolic abnormalities in these mice are improved by infusion of undercarboxylated osteocalcin. These results indicate the existence of a bone-pancreas endocrine loop through which insulin signaling in the osteoblast ensures osteoblast differentiation and stimulates osteocalcin production, which in turn regulates insulin sensitivity and pancreatic insulin secretion.


Asunto(s)
Osteoblastos/metabolismo , Osteogénesis , Receptor de Insulina/metabolismo , Adiposidad , Animales , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Resistencia a la Insulina , Masculino , Ratones , Osteoblastos/citología , Osteocalcina/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteína 1 Relacionada con Twist/metabolismo
14.
Nature ; 575(7782): 361-365, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695197

RESUMEN

Reprogramming of mitochondria provides cells with the metabolic flexibility required to adapt to various developmental transitions such as stem cell activation or immune cell reprogramming, and to respond to environmental challenges such as those encountered under hypoxic conditions or during tumorigenesis1-3. Here we show that the i-AAA protease YME1L rewires the proteome of pre-existing mitochondria in response to hypoxia or nutrient starvation. Inhibition of mTORC1 induces a lipid signalling cascade via the phosphatidic acid phosphatase LIPIN1, which decreases phosphatidylethanolamine levels in mitochondrial membranes and promotes proteolysis. YME1L degrades mitochondrial protein translocases, lipid transfer proteins and metabolic enzymes to acutely limit mitochondrial biogenesis and support cell growth. YME1L-mediated mitochondrial reshaping supports the growth of pancreatic ductal adenocarcinoma (PDAC) cells as spheroids or xenografts. Similar changes to the mitochondrial proteome occur in the tumour tissues of patients with PDAC, suggesting that YME1L is relevant to the pathophysiology of these tumours. Our results identify the mTORC1-LIPIN1-YME1L axis as a post-translational regulator of mitochondrial proteostasis at the interface between metabolism and mitochondrial dynamics.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Metabolismo de los Lípidos , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Humanos , Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metaloendopeptidasas/genética , Proteínas Mitocondriales/genética , Proteolisis
15.
Glia ; 71(4): 1120-1141, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36583573

RESUMEN

The sphingolipids galactosylceramide (GalCer), sulfatide (ST) and sphingomyelin (SM) are essential for myelin stability and function. GalCer and ST are synthesized mostly from C22-C24 ceramides, generated by Ceramide Synthase 2 (CerS2). To clarify the requirement for C22-C24 sphingolipid synthesis in myelin biosynthesis and stability, we generated mice lacking CerS2 specifically in myelinating cells (CerS2ΔO/ΔO ). At 6 weeks of age, normal-appearing myelin had formed in CerS2ΔO/ΔO mice, however there was a reduction in myelin thickness and the percentage of myelinated axons. Pronounced loss of C22-C24 sphingolipids in myelin of CerS2ΔO/ΔO mice was compensated by greatly increased levels of C18 sphingolipids. A distinct microglial population expressing high levels of activation and phagocytic markers such as CD64, CD11c, MHC class II, and CD68 was apparent at 6 weeks of age in CerS2ΔO/ΔO mice, and had increased by 10 weeks. Increased staining for denatured myelin basic protein was also apparent in 6-week-old CerS2ΔO/ΔO mice. By 16 weeks, CerS2ΔO/ΔO mice showed pronounced myelin atrophy, motor deficits, and axon beading, a hallmark of axon stress. 90% of CerS2ΔO/ΔO mice died between 16 and 26 weeks of age. This study highlights the importance of sphingolipid acyl chain length for the structural integrity of myelin, demonstrating how a modest reduction in lipid chain length causes exposure of a denatured myelin protein epitope and expansion of phagocytic microglia, followed by axon pathology, myelin degeneration, and motor deficits. Understanding the molecular trigger for microglial activation should aid the development of therapeutics for demyelinating and neurodegenerative diseases.


Asunto(s)
Microglía , Vaina de Mielina , Ratones , Animales , Microglía/metabolismo , Vaina de Mielina/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo
16.
Blood ; 137(5): 646-660, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538798

RESUMEN

Richter's transformation (RT) is an aggressive lymphoma that occurs upon progression from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a significant proportion of RT cases lack CLL phase-associated events. Here, we report that high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the murine Eµ-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent mutations, we identified a profile of genomic aberrations intermediate between CLL and diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patología , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptor Notch1/fisiología , Animales , Evolución Clonal , Progresión de la Enfermedad , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Genes p53 , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/fisiopatología , Linfocitos Infiltrantes de Tumor/inmunología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/fisiología , Transcriptoma , Microambiente Tumoral , Proteína p53 Supresora de Tumor/fisiología , Regulación hacia Arriba
17.
Immunity ; 40(1): 78-90, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439266

RESUMEN

Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.


Asunto(s)
Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Células Th17/inmunología , Inmunidad Adaptativa , Animales , Células Cultivadas , Inmunidad Innata , Memoria Inmunológica , Terapia de Inmunosupresión , Interleucina-18/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Especificidad de Órganos , Receptores de Interleucina-1/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
18.
Cell Mol Life Sci ; 79(8): 395, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35789435

RESUMEN

Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.


Asunto(s)
Ceramidas , Enfermedades Metabólicas , Ceramidas/metabolismo , Humanos , Obesidad/complicaciones , Transducción de Señal , Esfingolípidos/metabolismo
19.
Nature ; 529(7585): 216-20, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26735015

RESUMEN

Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.


Asunto(s)
Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Proliferación Celular , Respiración de la Célula , Endotelio Vascular/citología , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/deficiencia , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal
20.
J Allergy Clin Immunol ; 145(1): 283-300.e8, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401286

RESUMEN

BACKGROUND: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS: RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.


Asunto(s)
Epidermis , Proteínas de Filamentos Intermediarios , Lípidos , Procesamiento Proteico-Postraduccional/inmunología , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal/inmunología , Animales , Epidermis/inmunología , Epidermis/metabolismo , Proteínas Filagrina , Ictiosis/genética , Ictiosis/inmunología , Ictiosis/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/inmunología , Proteínas de Filamentos Intermediarios/metabolismo , Lípidos/biosíntesis , Lípidos/genética , Lípidos/inmunología , Ratones , Ratones Noqueados , Procesamiento Proteico-Postraduccional/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/inmunología , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA