Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Curr Osteoporos Rep ; 21(5): 552-566, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37530996

RESUMEN

PURPOSE OF REVIEW: The study aims to provide updated information on the genetic factors associated with the diagnoses 'Diffuse Idiopathic Skeletal Hyperostosis' (DISH), 'Ossification of the Posterior Longitudinal Ligament' (OPLL), and in patients with spinal ligament ossification. RECENT FINDINGS: Recent studies have advanced our knowledge of genetic factors associated with DISH, OPLL, and other spinal ossification (ossification of the anterior longitudinal ligament [OALL] and the yellow ligament [OYL]). Several case studies of individuals afflicted with monogenic disorders, such as X-linked hypophosphatemia (XLH), demonstrate the strong association of fibroblast growth factor 23-related hypophosphatemia with OPLL, suggesting that pathogenic variants in PHEX, ENPP1, and DMP1 are associated with FGF23-phosphate wasting phenotype and strong genetic factors placing patients at risk for OPLL. Moreover, emerging evidence demonstrates that heterozygous and compound heterozygous ENPP1 pathogenic variants inducing 'Autosomal Recessive Hypophosphatemic Rickets Type 2' (ARHR2) also place patients at risk for DISH and OPLL, possibly due to the loss of inhibitory plasma pyrophosphate (PPi) which suppresses ectopic calcification and enthesis mineralization. Our findings emphasize the importance of genetic and plasma biomarker screening in the clinical evaluation of DISH and OPLL patients, with plasma PPi constituting an important new biomarker for the identification of DISH and OPLL patients whose disease course may be responsive to ENPP1 enzyme therapy, now in clinical trials for rare calcification disorders.


Asunto(s)
Hiperostosis Esquelética Difusa Idiopática , Osificación del Ligamento Longitudinal Posterior , Humanos , Hiperostosis Esquelética Difusa Idiopática/genética , Hiperostosis Esquelética Difusa Idiopática/complicaciones , Osteogénesis/genética , Osificación del Ligamento Longitudinal Posterior/genética , Osificación del Ligamento Longitudinal Posterior/complicaciones , Biomarcadores , Ligamentos
2.
Nature ; 518(7537): 107-10, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25409146

RESUMEN

MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Linfoma/genética , Linfoma/terapia , MicroARNs/antagonistas & inhibidores , Microambiente Tumoral , Ácidos , Animales , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Modelos Animales de Enfermedad , Femenino , Concentración de Iones de Hidrógeno , Linfoma/patología , Masculino , Ratones , MicroARNs/genética , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Nanopartículas/química , Oncogenes/genética , Ácidos Nucleicos de Péptidos/administración & dosificación , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/uso terapéutico , Microambiente Tumoral/genética
3.
Nature ; 510(7506): 542-6, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847880

RESUMEN

Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Metformina/farmacología , Mitocondrias/enzimología , Animales , Glucemia/análisis , Glucemia/biosíntesis , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Glicerolfosfato Deshidrogenasa/deficiencia , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Secreción de Insulina , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 289(6): 3294-306, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24338010

RESUMEN

NPP4 is a type I extracellular membrane protein on brain vascular endothelium inducing platelet aggregation via the hydrolysis of Ap3A, whereas NPP1 is a type II extracellular membrane protein principally present on the surface of chondrocytes that regulates tissue mineralization. To understand the metabolism of purinergic signals resulting in the physiologic activities of the two enzymes, we report the high resolution crystal structure of human NPP4 and explore the molecular basis of its substrate specificity with NPP1. Both enzymes cleave Ap3A, but only NPP1 can hydrolyze ATP. Comparative structural analysis reveals a tripartite lysine claw in NPP1 that stabilizes the terminal phosphate of ATP, whereas the corresponding region of NPP4 contains features that hinder this binding orientation, thereby inhibiting ATP hydrolysis. Furthermore, we show that NPP1 is unable to induce platelet aggregation at physiologic concentrations reported in human blood, but it could stimulate platelet aggregation if localized at low nanomolar concentrations on vascular endothelium. The combined studies expand our understanding of NPP1 and NPP4 substrate specificity and range and provide a rational mechanism by which polymorphisms in NPP1 confer stroke resistance.


Asunto(s)
Adenosina Trifosfato/química , Fosfatos de Dinucleósidos/química , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas/química , Accidente Cerebrovascular/enzimología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Plaquetas/enzimología , Plaquetas/patología , Encéfalo/enzimología , Encéfalo/patología , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/patología , Endotelio Vascular/fisiología , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Agregación Plaquetaria/genética , Polimorfismo Genético , Estructura Terciaria de Proteína , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Especificidad por Sustrato
5.
Blood ; 120(22): 4432-40, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22995898

RESUMEN

Ap3A is a platelet-dense granule component released into the extracellular space during the second wave of platelet aggregation on activation. Here, we identify an uncharacterized enzyme, nucleotide pyrophosphatase/phosphodiesterase-4 (NPP4), as a potent hydrolase of Ap3A capable of stimulating platelet aggregation and secretion. We demonstrate that NPP4 is present on the surface of vascular endothelium, where it hydrolyzes Ap3A into AMP and ADP, and Ap4A into AMP and ATP. Platelet aggregation assays with citrated platelet-rich plasma reveal that the primary and secondary waves of aggregation and dense granule release are strongly induced by nanomolar NPP4 in a concentration-dependent manner in the presence of Ap3A, while Ap3A alone initiates a primary wave of aggregation followed by rapid disaggregation. NPP2 and an active site NPP4 mutant, neither of which appreciably hydrolyzes Ap3A, have no effect on platelet aggregation and secretion. Finally, by using ADP receptor blockade we confirm that NPP4 mediates platelet aggregation via release of ADP from Ap3A and activation of ADP receptors. Collectively, these studies define the biologic and enzymatic basis for NPP4 and Ap3A activity in platelet aggregation in vitro and suggest that NPP4 promotes hemostasis in vivo by augmenting ADP-mediated platelet aggregation at the site of vascular injury.


Asunto(s)
Coagulación Sanguínea , Endotelio Vascular/enzimología , Hidrolasas Diéster Fosfóricas/fisiología , Pirofosfatasas/fisiología , Adenosina Difosfato/metabolismo , Adulto , Animales , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Coagulantes/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/fisiología , Fosfatos de Dinucleósidos/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/lesiones , Endotelio Vascular/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Hidrólisis , Técnicas In Vitro , Insectos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/farmacología , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/fisiología , Pirofosfatasas/metabolismo , Pirofosfatasas/farmacología , Distribución Tisular
6.
Annu Rev Pathol ; 19: 507-540, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37871131

RESUMEN

The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Calcificación Vascular , Adulto , Humanos , Persona de Mediana Edad , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
7.
Bone ; 186: 117136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806089

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.


Asunto(s)
Fenotipo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Pirofosfatasas/genética , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Femenino , Variación Genética , Masculino , Mutación/genética
8.
JCI Insight ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888971

RESUMEN

A defining feature of systemic lupus erythematosus (SLE) is loss of tolerance to self-DNA, and DNASE1L3 deficiency, the main enzyme responsible for chromatin degradation in blood, is also associated with SLE. This association includes an ultra-rare pediatric population with DNASE1L3 deficiency who develop SLE, adult patients with loss of function variants of DNASE1L3 who are at a higher risk for SLE, and patients with sporadic SLE who have neutralizing autoantibodies to DNASE1L3. To mitigate the pathogenic effects of inherited and acquired DNASE1L3 deficiencies, we engineered a long-acting enzyme biologic with dual DNASE1/DNASE1L3 activity that is resistant to DNASE1 and DNASE1L3 inhibitors. Notably, we found that the biologic prevented the development of lupus in Dnase1-/-/Dnase1L3-/- double knockout mice and rescued animals from death in pristane-induced lupus. Finally, we confirmed that the human isoform of the enzyme biologic was not recognized by autoantibodies in SLE and efficiently degrades genomic and mitochondrial cell free DNA, as well as microparticle DNA, in SLE plasma. Our findings suggest that autoimmune diseases characterized by aberrant DNA accumulation, such as SLE, can be effectively treated with a replacement DNASE tailored to bypass pathogenic mechanisms, both genetic and acquired, that restrict DNASE1L3 activity.

9.
Elife ; 122023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930696

RESUMEN

Clinical trials have demonstrated that lonafarnib, a farnesyltransferase inhibitor, extends the lifespan in patients afflicted by Hutchinson-Gilford progeria syndrome, a devastating condition that accelerates many characteristics of aging and results in premature death due to cardiovascular sequelae. The US Food and Drug Administration approved Zokinvy (lonafarnib) in November 2020 for treating these patients, yet a detailed examination of drug-associated effects on cardiovascular structure, properties, and function has remained wanting. In this paper, we report encouraging outcomes of daily post-weaning treatment with lonafarnib on the composition and biomechanical phenotype of elastic and muscular arteries as well as associated cardiac function in a well-accepted mouse model of progeria that exhibits severe perimorbid cardiovascular disease. Lonafarnib resulted in 100% survival of the treated progeria mice to the study end-point (time of 50% survival of untreated mice), with associated improvements in arterial structure and function working together to significantly reduce pulse wave velocity and improve left ventricular diastolic function. By contrast, neither treatment with the mTOR inhibitor rapamycin alone nor dual treatment with lonafarnib plus rapamycin improved outcomes over that achieved with lonafarnib monotherapy.


Asunto(s)
Progeria , Ratones , Animales , Progeria/tratamiento farmacológico , Progeria/genética , Análisis de la Onda del Pulso , Piperidinas/farmacología , Sirolimus/uso terapéutico , Lamina Tipo A
10.
J Biol Chem ; 286(34): 30130-41, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21719699

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), initiating signaling cascades leading to cancer metastasis, wound healing, and angiogenesis. Knowledge of the pathway and kinetics of LPA synthesis by ATX is critical for developing quantitative physiological models of LPA signaling. We measured the individual rate constants and pathway of the LPA synthase cycle of ATX using the fluorescent lipid substrates FS-3 and 12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl))-LPC. FS-3 binds rapidly (k(1) ≥500 µm(-1) s(-1)) and is hydrolyzed slowly (k(2) = 0.024 s(-1)). Release of the first hydrolysis product is random and rapid (≥1 s(-1)), whereas release of the second is slow and rate-limiting (0.005-0.007 s(-1)). Substrate binding and hydrolysis are slow and rate-limiting with LPC. Product release is sequential with choline preceding LPA. The catalytic pathway and kinetics depend strongly on the substrate, suggesting that ATX kinetics could vary for the various in vivo substrates. Slow catalysis with LPC reveals the potential for LPA signaling to spread to cells distal to the site of LPC substrate binding by ATX. An ATX mutant in which catalytic threonine at position 210 is replaced with alanine binds substrate weakly, favoring a role for Thr-210 in binding as well as catalysis. FTY720P, the bioactive form of a drug currently used to treat multiple sclerosis, inhibits ATX in an uncompetitive manner and slows the hydrolysis reaction, suggesting that ATX inhibition plays a significant role in lymphocyte immobilization in FTY720P-based therapeutics.


Asunto(s)
Lisofosfolípidos/química , Complejos Multienzimáticos/química , Fosfodiesterasa I/química , Pirofosfatasas/química , Sustitución de Aminoácidos , Catálisis , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Hidrólisis , Cinética , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Mutación Missense , Organofosfatos/química , Organofosfatos/uso terapéutico , Fosfodiesterasa I/antagonistas & inhibidores , Fosfodiesterasa I/genética , Fosfodiesterasa I/metabolismo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/uso terapéutico , Especificidad por Sustrato/genética
11.
Front Chem ; 10: 863118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494652

RESUMEN

Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.

12.
J Bone Miner Res ; 37(9): 1733-1749, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35773783

RESUMEN

Biallelic ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency induces vascular/soft tissue calcifications in generalized arterial calcification of infancy (GACI), and low bone mass with phosphate-wasting rickets in GACI survivors (autosomal hypophosphatemic rickets type-2). ENPP1 haploinsufficiency induces early-onset osteoporosis and mild phosphate wasting in adults. Both conditions demonstrate the unusual combination of reduced accrual of skeletal mineral, yet excess and progressive heterotopic mineralization. ENPP1 is the only enzyme that generates extracellular pyrophosphate (PPi), a potent inhibitor of both bone and heterotopic mineralization. Life-threatening vascular calcification in ENPP1 deficiency is due to decreased plasma PPi; however, the mechanism by which osteopenia results is not apparent from an understanding of the enzyme's catalytic activity. To probe for catalysis-independent ENPP1 pathways regulating bone, we developed a murine model uncoupling ENPP1 protein signaling from ENPP1 catalysis, Enpp1T238A mice. In contrast to Enpp1asj mice, which lack ENPP1, Enpp1T238A mice have normal trabecular bone microarchitecture and favorable biomechanical properties. However, both models demonstrate low plasma Pi and PPi, increased fibroblast growth factor 23 (FGF23), and by 23 weeks, osteomalacia demonstrating equivalent phosphate wasting in both models. Reflecting findings in whole bone, calvarial cell cultures from Enpp1asj mice demonstrated markedly decreased calcification, elevated transcription of Sfrp1, and decreased nuclear ß-catenin signaling compared to wild-type (WT) and Enpp1T238A cultures. Finally, the decreased calcification and nuclear ß-catenin signaling observed in Enpp1asj cultures was restored to WT levels by knockout of Sfrp1. Collectively, our findings demonstrate that catalysis-independent ENPP1 signaling pathways regulate bone mass via the expression of soluble Wnt inhibitors such as secreted frizzled-related protein 1 (SFRP1), whereas catalysis dependent pathways regulate phosphate homeostasis through the regulation of plasma FGF23. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Huesos/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Animales , Catálisis , Raquitismo Hipofosfatémico Familiar , Factores de Crecimiento de Fibroblastos , Mamíferos/metabolismo , Ratones , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Calcificación Vascular , beta Catenina
13.
Nat Biotechnol ; 40(3): 325-334, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34711990

RESUMEN

Gene amplification drives oncogenesis in a broad spectrum of cancers. A number of drugs have been developed to inhibit the protein products of amplified driver genes, but their clinical efficacy is often hampered by drug resistance. Here, we introduce a therapeutic strategy for targeting cancer-associated gene amplifications by activating the DNA damage response with triplex-forming oligonucleotides (TFOs), which drive the induction of apoptosis in tumors, whereas cells without amplifications process lower levels of DNA damage. Focusing on cancers driven by HER2 amplification, we find that TFOs targeting HER2 induce copy number-dependent DNA double-strand breaks (DSBs) and activate p53-independent apoptosis in HER2-positive cancer cells and human tumor xenografts via a mechanism that is independent of HER2 cellular function. This strategy has demonstrated in vivo efficacy comparable to that of current precision medicines and provided a feasible alternative to combat drug resistance in HER2-positive breast and ovarian cancer models. These findings offer a general strategy for targeting tumors with amplified genomic loci.


Asunto(s)
Neoplasias de la Mama , Amplificación de Genes , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Daño del ADN , Femenino , Genómica , Humanos , Oligonucleótidos
14.
J Bone Miner Res ; 37(3): 494-504, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34882836

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency leads to cardiovascular calcification in infancy, fibroblast growth factor 23 (FGF23)-mediated hypophosphatemic rickets in childhood, and osteomalacia in adulthood. Excessive enthesis mineralization and cervical spine fusion have been previously reported in patients with biallelic ENPP1 deficiency, but their effect on quality of life is unknown. We describe additional musculoskeletal complications in patients with ENPP1 deficiency, namely osteoarthritis and interosseous membrane ossification, and for the first time evaluate health-related quality of life (HRQoL) in patients with this disease, both subjectively via narrative report, and objectively via the Brief Pain Inventory-Short Form, and a Patient Reported Outcome Measurement Information System Physical Function (PROMIS PF) short form. Residual pain, similar in magnitude to that identified in adult patients with X-linked hypophosphatemia, was experienced by the majority of patients despite use of analgesic medications. Impairment in physical function varied from mild to severe. To assess murine ENPP1 deficiency for the presence of enthesopathy, and for the potential response to enzyme replacement therapy, we maintained Enpp1asj/asj mice on regular chow for 23 weeks and treated cohorts with either vehicle or a long-acting form of recombinant ENPP1. Enpp1asj/asj mice treated with vehicle exhibited robust calcification throughout their Achilles tendons, whereas two-thirds of those treated with ENPP1 enzyme replacement exhibited complete or partial suppression of the Achilles tendon calcification. Our combined results document that musculoskeletal complications are a significant source of morbidity in biallelic ENPP1 deficiency, a phenotype which is closely recapitulated in Enpp1asj/asj mice. Finally, we show that a long-acting form of recombinant ENPP1 prevents the development of enthesis calcification at the relatively modest dose of 0.3 mg/kg per week, suggesting that suppression of enthesopathy may be attainable upon dose escalation. © 2021 American Society for Bone and Mineral Research (ASBMR). This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Entesopatía , Raquitismo Hipofosfatémico Familiar , Calcificación Vascular , Adulto , Animales , Modelos Animales de Enfermedad , Entesopatía/tratamiento farmacológico , Entesopatía/genética , Terapia de Reemplazo Enzimático , Raquitismo Hipofosfatémico Familiar/genética , Femenino , Factores de Crecimiento de Fibroblastos , Humanos , Masculino , Ratones , Dolor , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Calidad de Vida , Calcificación Vascular/genética
15.
Orphanet J Rare Dis ; 17(1): 273, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854274

RESUMEN

BACKGROUND AND IMPORTANCE: Hearing loss (HL) has been sporadically described, but not well characterized, in Generalized Arterial Calcification of Infancy (GACI), a rare disease in which pathological calcification typically presents in infancy. OBJECTIVES: This study aims to describe the clinical audiologic and otologic features and potential etiology of hearing impairment in GACI and gain pathophysiological insight from a murine model of GACI. DESIGN: Cross-sectional cohort study of individuals with GACI. Murine ossicle micromorphology of the ENPP1asj/asj mutant compared to wild-type. SETTING: Clinical research hospital; basic science laboratory. PARTICIPANTS: Nineteen individuals with GACI who met clinical, biochemical, and genetic criteria for diagnosis. MAIN OUTCOMES AND MEASURES: Clinical, biochemical, and radiologic features associated with hearing status. RESULTS: Pure-tone thresholds could be established in 15 (n = 30 ears) of the 19 patients who underwent audiological assessments. The prevalence of HL was 50% (15/30) of ears, with conductive HL in 80% and sensorineural HL in 20%. In terms of patients with HL (n = 8), seven patients had bilateral HL and one patient had unilateral HL. Degree of HL was mild to moderate for 87% of the 15 ears with hearing loss. Of those patients with sufficient pure-tone and middle ear function data, 80% (8/10) had audiometric configurations suggestive of ossicular chain dysfunction (OCD). Recurrent episodes of otitis media (ROM) requiring pressure-equalizing tube placement were common. In patients who underwent cranial CT, 54.5% (6/11) had auricular calcification. Quantitative backscattered electron imaging (qBEI) of murine ossicles supports an OCD component of auditory dysfunction in GACI, suggesting loss of ossicular osteocytes without initiation of bone remodeling. CONCLUSIONS AND RELEVANCE: Hearing loss is common in GACI; it is most often conductive, and mild to moderate in severity. The etiology of HL is likely multifactorial, involving dysfunction of the ossicular chain and/or recurrent otitis media. Clinically, this study highlights the importance of early audiologic and otologic evaluation in persons with GACI. Novel findings of high rates of OCD and ROM may inform management, and in cases of unclear HL etiology, dedicated temporal bone imaging should be considered.


Asunto(s)
Pérdida Auditiva , Otitis Media , Animales , Estudios Transversales , Audición , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/genética , Humanos , Ratones , Otitis Media/complicaciones , Calcificación Vascular
16.
J Bone Miner Res ; 37(6): 1125-1135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35340077

RESUMEN

Homozygous ENPP1 mutations are associated with autosomal recessive hypophosphatemic rickets type 2 (ARHR2), severe ossification of the spinal ligaments, and generalized arterial calcification of infancy type 1. There are a limited number of reports on phenotypes associated with heterozygous ENPP1 mutations. Here, we report a series of three probands and their families with heterozygous and compound heterozygous ENPP1 mutations. The first case (case 1) was a 47-year-old male, diagnosed with early-onset osteoporosis and low-normal serum phosphate levels, which invoked suspicion for hypophosphatemic rickets. The second and third cases were 77- and 54-year-old females who both presented with severe spinal ligament ossification and the presumptive diagnosis of diffuse idiopathic skeletal hyperostosis (DISH). Upon workup, fibroblast growth factor 23 (FGF23) was noted to be relatively high in case 2 and serum phosphorous was low-normal in case 3, and the diagnoses of X-linked hypophosphatemic rickets (XLH) and ARHR2 were considered. Genetic testing for genes related to congenital hypophosphatemic rickets was therefore performed, revealing heterozygous ENPP1 variants in cases 1 and 2 (case 1, c.536A>G, p.Asn179Ser; case 2, c.1352A>G, p.Tyr451Cys) and compound heterozygous ENPP1 variants in case 3 constituting the same variants present in cases 1 and 2 (c.536A>G, p.Asn179Ser and c.1352A>G, p.Tyr451Cys). Several in silico tools predicted the two variants to be pathogeneic, a finding confirmed by in vitro biochemical analysis demonstrating that the p.Asn179Ser and p.Tyr451Cys ENPP1 variants possessed a catalytic velocity of 45% and 30% compared with that of wild-type ENPP1, respectively. Both variants were therefore categorized as pathogenic loss-of-function mutations. Our findings suggest that ENPP1 mutational status should be evaluated in patients presenting with the diagnosis of idiopathic DISH, ossification of the posterior longitudinal ligament (OPLL), and early-onset osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hiperostosis Esquelética Difusa Idiopática , Osteoporosis , Raquitismo Hipofosfatémico , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/genética , Femenino , Factores de Crecimiento de Fibroblastos/genética , Haploinsuficiencia , Humanos , Hiperostosis Esquelética Difusa Idiopática/complicaciones , Masculino , Osteoporosis/complicaciones , Osteoporosis/genética , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Raquitismo Hipofosfatémico/complicaciones
17.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34813507

RESUMEN

Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirimidinas/biosíntesis , Pirofosfatasas/metabolismo , Regeneración , Transducción de Señal , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Ratones , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética
18.
Bone ; 142: 115656, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980560

RESUMEN

Ectonucleotide phosphatase/phosphodiesterase 1 (ENPP1) deficiency results in either lethal arterial calcifications ('Generalized Arterial Calcification of Infancy' - GACI), phosphate wasting rickets ('Autosomal Recessive Hypophosphatemic Rickets type 2' - ARHR2), early onset osteoporosis, or progressive spinal rigidity ('Ossification of the Posterior Longitudinal Ligament' - OPLL). As ENPP1 generates a strong endogenous mineralization inhibitor - extracellular pyrophosphate (PPi) - ENPP1 deficiency should not result in reduced bone volume, and therefore the mechanism ENPP1 associated osteoporosis is not apparent given current understanding of the enzyme's function. To investigate genetic pathways driving the skeletal phenotype of ENPP1 deficiency we compared gene expression in Enpp1asj/asj mice and WT sibling pairs by RNAseq and qPCR in whole bones, and in the liver and kidney by qPCR, directly correlating gene expression with measures of bone microarchitectural and biomechanical phenotypes. Unbiased analysis of the differentially expressed genes compared to relevant human disease phenotypes revealed that Enpp1asj/asj mice exhibit strong signatures of osteoporosis, ARHR2 and OPLL. We found that ENPP1 deficient mice exhibited reduced gene transcription of Wnt ligands in whole bone and increased transcription of soluble Wnt inhibitors in the liver and kidney, suggestive of multiorgan inhibition of Wnt activity. Consistent with Wnt suppression in bone, Collagen gene pathways in bone were significantly decreased and Fgf23 was significantly increased, all of which directly correlated with bone microarchitectural defects and fracture risk in Enpp1asj/asj mice. Moreover, the bone findings in 10-week old mice correlated with Enpp1 transcript counts but not plasma [PPi], suggesting that the skeletal phenotype at 10 weeks is driven by catalytically independent ENPP1 function. In contrast, the bone findings in 23-week Enpp1asj/asj mice strongly correlated with plasma PPi, suggesting that chronically low PPi drives the skeletal phenotype in older mice. Finally, correlation between Enpp1 and Fgf23 transcription suggested ENPP1 regulation of Fgf23, which we confirmed by dosing Enpp1asj/asj mice with soluble ENPP1-Fc and observing suppression of intact plasma FGF23 and ALP. In summary, our findings suggest that osteoporosis associated with ENPP1 deficiency involves the suppression of Wnt via catalytically independent Enpp1 pathways, and validates Enpp1asj/asj mice as tools to better understand OPLL and Paradoxical Mineralization Disorders.


Asunto(s)
Osteomalacia , Osteoporosis , Calcificación Vascular , Animales , Factor-23 de Crecimiento de Fibroblastos , Ratones , Osteoporosis/genética , Hidrolasas Diéster Fosfóricas/genética , Monoéster Fosfórico Hidrolasas , Pirofosfatasas/genética
19.
Clin Transl Sci ; 14(1): 362-372, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064927

RESUMEN

Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase-1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three-prong strategy. First, we added new N-glycans to ENPP1; second, we optimized pH-dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two-step process to improve sialylation by first producing ENPP1-Fc in cells stably transfected with human α-2,6-sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4-O-Bu3 ManNAc. These steps sequentially increased the half-life of the parent compound in rodents from 37 hours to ~ 67 hours with an added N-glycan, to ~ 96 hours with optimized pH-dependent Fc recycling, to ~ 204 hours when the therapeutic was produced in ST6-overexpressing cells with 1,3,4-O-Bu3 ManNAc supplementation. The alterations were demonstrated to increase drug potency by maintaining efficacious levels of plasma phosphoanhydride pyrophosphate in ENPP1-deficient mice when the optimized biologic was administered at a 10-fold lower mass dose less frequently than the parent compound-once every 10 days vs. 3 times a week. We believe these improvements represent a general strategy to rationally optimize protein therapeutics.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/uso terapéutico , Hidrolasas Diéster Fosfóricas/farmacología , Ingeniería de Proteínas , Pirofosfatasas/farmacología , Receptores Fc/uso terapéutico , Proteínas Recombinantes de Fusión/farmacología , Calcificación Vascular/tratamiento farmacológico , Animales , Área Bajo la Curva , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Glicosilación , Semivida , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Ratones Transgénicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/uso terapéutico , Estructura Terciaria de Proteína/genética , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Pirofosfatasas/uso terapéutico , Receptores Fc/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/uso terapéutico , Calcificación Vascular/genética
20.
J Bone Miner Res ; 36(5): 942-955, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33465815

RESUMEN

Inactivating mutations in human ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) may result in early-onset osteoporosis (EOOP) in haploinsufficiency and autosomal recessive hypophosphatemic rickets (ARHR2) in homozygous deficiency. ARHR2 patients are frequently treated with phosphate supplementation to ameliorate the rachitic phenotype, but elevating plasma phosphorus concentrations in ARHR2 patients may increase the risk of ectopic calcification without increasing bone mass. To assess the risks and efficacy of conventional ARHR2 therapy, we performed comprehensive evaluations of ARHR2 patients at two academic medical centers and compared their skeletal and renal phenotypes with ENPP1-deficient Enpp1asj/asj mice on an acceleration diet containing high phosphate treated with recombinant murine Enpp1-Fc. ARHR2 patients treated with conventional therapy demonstrated improvements in rickets, but all adults and one adolescent analyzed continued to exhibit low bone mineral density (BMD). In addition, conventional therapy was associated with the development of medullary nephrocalcinosis in half of the treated patients. Similar to Enpp1asj/asj mice on normal chow and to patients with mono- and biallelic ENPP1 mutations, 5-week-old Enpp1asj/asj mice on the high-phosphate diet exhibited lower trabecular bone mass, reduced cortical bone mass, and greater bone fragility. Treating the Enpp1asj/asj mice with recombinant Enpp1-Fc protein between weeks 2 and 5 normalized trabecular bone mass, normalized or improved bone biomechanical properties, and prevented the development of nephrocalcinosis and renal failure. The data suggest that conventional ARHR2 therapy does not address low BMD inherent in ENPP1 deficiency, and that ENPP1 enzyme replacement may be effective for correcting low bone mass in ARHR2 patients without increasing the risk of nephrocalcinosis. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Terapia de Reemplazo Enzimático , Fosfatos , Adolescente , Animales , Suplementos Dietéticos , Humanos , Ratones , Fenotipo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA