Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 114(3): 463-481, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36880270

RESUMEN

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Asunto(s)
Brachypodium , Brachypodium/metabolismo , Cromatografía Liquida , Teoría de la Información , Cobre/metabolismo , Espectrometría de Masas en Tándem , Metabolómica/métodos , Metaboloma
2.
Plant Physiol ; 184(3): 1263-1272, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32873628

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is a mutually beneficial association of plants and fungi of the subphylum Glomeromycotina. Endosymbiotic AM fungi colonize the inner cortical cells of the roots, where they form branched hyphae called arbuscules that function in nutrient exchange with the plant. To support arbuscule development and subsequent bidirectional nutrient exchange, the root cortical cells undergo substantial transcriptional reprogramming. REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1), previously studied in several dicot plant species, is a major regulator of this cortical cell transcriptional program. Here, we generated ram1 mutants and RAM1 overexpressors in a monocot, Brachypodium distachyon. The AM phenotypes of two ram1 lines revealed that RAM1 is only partly required to enable arbuscule development in B. distachyon Transgenic lines constitutively overexpressing BdRAM1 showed constitutive expression of AM-inducible genes even in the shoots. Following inoculation with AM fungi, BdRAM1-overexpressing plants showed higher arbuscule densities relative to controls, indicating the potential to manipulate the relative proportion of symbiotic interfaces via modulation of RAM1 However, the overexpressors also show altered expression of hormone biosynthesis genes and aberrant growth patterns, including stunted bushy shoots and poor seed set. While these phenotypes possibly provide additional clues about the scope of influence of BdRAM1, they also indicate that directed approaches to increase the density of symbiotic interfaces will require a more focused, potentially cell type specific manipulation of transcription factor gene expression.


Asunto(s)
Brachypodium/genética , Brachypodium/microbiología , Glomeromycota/crecimiento & desarrollo , Glomeromycota/genética , Micorrizas/genética , Raíces de Plantas/genética , Simbiosis/genética , Regulación Fúngica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Micorrizas/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Simbiosis/fisiología , Factores de Transcripción
3.
Plant Cell ; 29(10): 2319-2335, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28855333

RESUMEN

Plants have lived in close association with arbuscular mycorrhizal (AM) fungi for over 400 million years. Today, this endosymbiosis occurs broadly in the plant kingdom where it has a pronounced impact on plant mineral nutrition. The symbiosis develops deep within the root cortex with minimal alterations in the external appearance of the colonized root; however, the absence of macroscopic alterations belies the extensive signaling, cellular remodeling, and metabolic alterations that occur to enable accommodation of the fungal endosymbiont. Recent research has revealed the involvement of a novel N-acetyl glucosamine transporter and an alpha/beta-fold hydrolase receptor at the earliest stages of AM symbiosis. Calcium channels required for symbiosis signaling have been identified, and connections between the symbiosis signaling pathway and key transcriptional regulators that direct AM-specific gene expression have been established. Phylogenomics has revealed the existence of genes conserved for AM symbiosis, providing clues as to how plant cells fine-tune their biology to enable symbiosis, and an exciting coalescence of genome mining, lipid profiling, and tracer studies collectively has led to the conclusion that AM fungi are fatty acid auxotrophs and that plants provide their fungal endosymbionts with fatty acids. Here, we provide an overview of the molecular program for AM symbiosis and discuss these recent advances.


Asunto(s)
Micorrizas/fisiología , Simbiosis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal
4.
Plant Cell ; 27(4): 1352-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25841038

RESUMEN

During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter, PT4, is required for symbiotic Pi transport, and in pt4, symbiotic Pi transport fails, arbuscules degenerate prematurely, and the symbiosis is not maintained. Premature arbuscule degeneration (PAD) is suppressed when pt4 mutants are nitrogen-deprived, possibly the result of compensation by PT8, a second AM-induced Pi transporter. However, PAD is also suppressed in nitrogen-starved pt4 pt8 double mutants, negating this hypothesis and furthermore indicating that in this condition, neither of these symbiotic Pi transporters is required for symbiosis. In M. truncatula, three AMT2 family ammonium transporters are induced during AM symbiosis. To test the hypothesis that suppression of PAD involves AMT2 transporters, we analyzed double and triple Pi and ammonium transporter mutants. ATM2;3 but not AMT2;4 was required for suppression of PAD in pt4, while AMT2;4, but not AMT2;3, complemented growth of a yeast ammonium transporter mutant. In summary, arbuscule life span is influenced by PT4 and ATM2;3, and their relative importance varies with the nitrogen status of the plant.


Asunto(s)
Medicago truncatula/metabolismo , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis
6.
Plant Biotechnol J ; 15(3): 318-330, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27557478

RESUMEN

Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes.


Asunto(s)
Genoma de Planta/genética , Lupinus/genética , Lupinus/microbiología , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Proteínas de Plantas/fisiología , Poliploidía , Sintenía/genética
7.
New Phytol ; 214(4): 1631-1645, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28380681

RESUMEN

During arbuscular mycorrhizal symbiosis (AMS), considerable amounts of lipids are generated, modified and moved within the cell to accommodate the fungus in the root, and it has also been suggested that lipids are delivered to the fungus. To determine the mechanisms by which root cells redirect lipid biosynthesis during AMS we analyzed the roles of two lipid biosynthetic enzymes (FatM and RAM2) and an ABC transporter (STR) that are required for symbiosis and conserved uniquely in plants that engage in AMS. Complementation analyses indicated that the biochemical function of FatM overlaps with that of other Fat thioesterases, in particular FatB. The essential role of FatM in AMS was a consequence of timing and magnitude of its expression. Lipid profiles of fatm and ram2 suggested that FatM increases the outflow of 16:0 fatty acids from the plastid, for subsequent use by RAM2 to produce 16:0 ß-monoacylglycerol. Thus, during AMS, high-level, specific expression of key lipid biosynthetic enzymes located in the plastid and the endoplasmic reticulum enables the root cell to fine-tune lipid biosynthesis to increase the production of ß-monoacylglycerols. We propose a model in which ß-monoacylglycerols, or a derivative thereof, are exported out of the root cell across the periarbuscular membrane for ultimate use by the fungus.


Asunto(s)
Enzimas/metabolismo , Lípidos/biosíntesis , Medicago truncatula/metabolismo , Micorrizas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Enzimas/genética , Ácidos Grasos/metabolismo , Prueba de Complementación Genética , Medicago truncatula/genética , Monoglicéridos/metabolismo , Mutación , Micorrizas/metabolismo , Proteínas de Plantas/genética , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
8.
Plant Physiol ; 169(4): 2774-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26511916

RESUMEN

During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1.


Asunto(s)
Hifa/fisiología , Medicago truncatula/genética , Medicago truncatula/microbiología , Micorrizas/fisiología , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Medicago truncatula/metabolismo , Microscopía Confocal , Modelos Genéticos , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simbiosis , Factores de Transcripción/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
Planta ; 236(3): 851-65, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22711284

RESUMEN

Brachypodium distachyon is a grass species that serves as a useful model for wheat and also for many of the grass species proposed as feedstocks for bioenergy production. Here, we monitored B. distachyon symbioses with five different arbuscular mycorrhizal (AM) fungi and identified symbioses that vary functionally with respect to plant performance. Three symbioses promoted significant increases in shoot phosphorus (P) content and shoot growth of Brachypodium, while two associations were neutral. The Brachypodium/Glomus candidum symbiosis showed a classic 'Paris-type' morphology. In the other four AM symbioses, hyphal growth was exclusively intracellular and linear; hyphal coils were not observed and arbuscules were abundant. Expression of the Brachypodium ortholog of the symbiosis-specific phosphate (Pi) transporter MtPT4 did not differ significantly in these five interactions indicating that the lack of apparent functionality did not result from a failure to express this gene or several other AM symbiosis-associated genes. Analysis of the expression patterns of the complete PHT1 Pi transporter gene family and AMT2 gene family in B. distachyon/G. intraradices mycorrhizal roots identified additional family members induced during symbiosis and again, transcript levels were similar in the different Brachypodium AM symbioses. This initial morphological, molecular and functional characterization provides a framework for future studies of functional diversity in AM symbiosis in B. distachyon.


Asunto(s)
Brachypodium/microbiología , Brachypodium/fisiología , Glomeromycota/fisiología , Micorrizas/crecimiento & desarrollo , Micorrizas/genética , Raíces de Plantas/microbiología , Simbiosis , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glomeromycota/genética , Hifa/citología , Hifa/crecimiento & desarrollo , Fósforo/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/fisiología
10.
Nat Plants ; 2: 15208, 2016 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-27249190

RESUMEN

Arbuscular mycorrhizal symbiosis (AMS), a widespread mutualistic association of land plants and fungi(1), is predicted to have arisen once, early in the evolution of land plants(2-4). Consistent with this notion, several genes required for AMS have been conserved throughout evolution(5) and their symbiotic functions preserved, at least between monocot and dicot plants(6,7). Despite its significance, knowledge of the plants' genetic programme for AMS is limited. To date, most genes required for AMS have been found through commonalities with the evolutionarily younger nitrogen-fixing Rhizobium legume symbiosis (RLS)(8) or by reverse genetic analyses of differentially expressed candidate genes(9). Large sequence-indexed insertion mutant collections and recent genome editing technologies have vastly increased the power of reverse genetics but selection of candidate genes, from the thousands of genes that change expression during AMS, remains an arbitrary process. Here, we describe a phylogenomics approach to identify genes whose evolutionary history predicts conservation for AMS and we demonstrate the accuracy of the predictions through reverse genetics analysis. Phylogenomics analysis of 50 plant genomes resulted in 138 genes from Medicago truncatula predicted to function in AMS. This includes 15 genes with known roles in AMS. Additionally, we demonstrate that mutants in six previously uncharacterized AMS-conserved genes are all impaired in AMS. Our results demonstrate that phylogenomics is an effective strategy to identify a set of evolutionarily conserved genes required for AMS.


Asunto(s)
Genómica , Medicago truncatula/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Rhizobium/fisiología , Simbiosis , Medicago truncatula/microbiología , Mutación , Fenotipo , Filogenia
11.
Rev. cuba. med. gen. integr ; 19(3)mayo.-jun. 2003. tab
Artículo en Español | LILACS | ID: lil-386927

RESUMEN

Se realizó un estudio descriptivo en 100 jóvenes pertenecientes al barrio de Colón, del municipio Centro Habana, área de alta incidencia de infecciones de transmisión sexual y SIDA del país, con el objetivo de conocer el estado de apreciación por los jóvenes sobre algunos aspectos de la transmisión de las ITS y el SIDA. Para el análisis se tomaron en cuenta las variables siguientes: edad, sexo, posibilidad de contagio, forma de contagio, disposición a realizarse el examen para el diagnóstico de VIH, confidencialidad, razón por la que no se realizaría el examen, lugar donde se realizaría el examen con pareja estable y sin pareja sexual estable. Como parte de los resultados se observó que un alto por ciento de jóvenes reconoce la posibilidad de haber tenido una relación sexual en la que hubiese podido contraer el virus del SIDA y en quienes la relación sexual sin protección hubiese sido la forma más probable del contagio


Asunto(s)
Humanos , Masculino , Adulto , Femenino , Infecciones por VIH , Atención Primaria de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA