Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 52(2): 159-60, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24210174

RESUMEN

Two papers in this issue, Castor et al. (2013) and Wyatt et al. (2013), and a third in Cell Reports, Garner et al. (2013), demonstrate that the scaffold protein SLX4 coordinates multiple nucleases in order to effectively resolve Holliday junctions and repair interstrand crosslinks (ICLs) in mammalian cells.


Asunto(s)
Reparación del ADN , ADN Cruciforme , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Animales , Humanos
2.
Nucleic Acids Res ; 43(7): 3626-42, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25765656

RESUMEN

A variety of DNA lesions, secondary DNA structures or topological stress within the DNA template may lead to stalling of the replication fork. Recovery of such forks is essential for the maintenance of genomic stability. The structure-specific endonuclease Mus81-Mms4 has been implicated in processing DNA intermediates that arise from collapsed forks and homologous recombination. According to previous genetic studies, the Srs2 helicase may play a role in the repair of double-strand breaks and ssDNA gaps together with Mus81-Mms4. In this study, we show that the Srs2 and Mus81-Mms4 proteins physically interact in vitro and in vivo and we map the interaction domains within the Srs2 and Mus81 proteins. Further, we show that Srs2 plays a dual role in the stimulation of the Mus81-Mms4 nuclease activity on a variety of DNA substrates. First, Srs2 directly stimulates Mus81-Mms4 nuclease activity independent of its helicase activity. Second, Srs2 removes Rad51 from DNA to allow access of Mus81-Mms4 to cleave DNA. Concomitantly, Mus81-Mms4 inhibits the helicase activity of Srs2. Taken together, our data point to a coordinated role of Mus81-Mms4 and Srs2 in processing of recombination as well as replication intermediates.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Endonucleasas de ADN Solapado/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Cartilla de ADN , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Técnicas del Sistema de Dos Híbridos
3.
EMBO J ; 31(8): 2034-46, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22354040

RESUMEN

In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.


Asunto(s)
Cromosomas/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Schizosaccharomyces/crecimiento & desarrollo
4.
J Biol Chem ; 288(46): 33193-204, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24100144

RESUMEN

The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , ADN de Hongos/genética , Glucano 1,3-beta-Glucosidasa/genética , Glucano 1,3-beta-Glucosidasa/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
EMBO J ; 29(10): 1713-25, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20389284

RESUMEN

The gene mutated in Bloom's syndrome, BLM, encodes a member of the RecQ family of DNA helicases that is needed to suppress genome instability and cancer predisposition. BLM is highly conserved and all BLM orthologs, including budding yeast Sgs1, have a large N-terminus that binds Top3-Rmi1 but has no known catalytic activity. In this study, we describe a sub-domain of the Sgs1 N-terminus that shows in vitro single-strand DNA (ssDNA) binding, ssDNA annealing and strand-exchange (SE) activities. These activities are conserved in the human and Drosophila orthologs. SE between duplex DNA and homologous ssDNA requires no cofactors and is inhibited by a single mismatched base pair. The SE domain of Sgs1 is required in vivo for the suppression of hyper-recombination, suppression of synthetic lethality and heteroduplex rejection. The top3Delta slow-growth phenotype is also SE dependent. Surprisingly, the highly divergent human SE domain functions in yeast. This work identifies SE as a new molecular function of BLM/Sgs1, and we propose that at least one role of SE is to mediate the strand-passage events catalysed by Top3-Rmi1.


Asunto(s)
Síndrome de Bloom/genética , ADN Helicasas/genética , RecQ Helicasas/genética , RecQ Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Alelos , Animales , Secuencia Conservada , ADN/genética , ADN de Cadena Simple/genética , Drosophila melanogaster , Humanos , Cinética , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
EMBO J ; 29(18): 3140-55, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20711169

RESUMEN

BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular , Pollos , ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , ARN Interferente Pequeño/farmacología , RecQ Helicasas/antagonistas & inhibidores , RecQ Helicasas/genética , Homología de Secuencia de Aminoácido , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética
7.
Nucleic Acids Res ; 38(2): 488-98, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19906698

RESUMEN

BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by the small ubiquitin-related modifier (SUMO), although the significance of this posttranslational modification remains elusive. Here, we demonstrate that Sgs1 is specifically sumoylated under the stress of DNA double strand breaks. The major SUMO attachment site in Sgs1 is lysine 621, which lies between the Top3 binding domain and the DNA helicase domain. Surprisingly, sumoylation of K621 was found to be uniquely required for Sgs1's role in telomere-telomere recombination. In contrast, sumoylation was dispensable for Sgs1's roles in DNA damage tolerance, supppression of direct repeat and rDNA recombination, and promotion of top3Delta slow growth. Our results demonstrate that although modification by SUMO is a conserved feature of RecQ family DNA helicases, the major sites of modification are located on different domains of the protein in different organisms. We suggest that sumoylation of different domains of RecQ DNA helicases from different organisms contributes to conserved roles in regulating telomeric recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , RecQ Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Telómero/química , ADN Ribosómico/química , Lisina/metabolismo , RecQ Helicasas/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
8.
Mutat Res ; 714(1-2): 33-43, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741981

RESUMEN

The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Epistasis Genética , Endonucleasas de ADN Solapado/genética , RecQ Helicasas/genética , Recombinación Genética , Ribonucleasa H/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Daño del ADN , Genes Bacterianos , Proteína Recombinante y Reparadora de ADN Rad52/genética
9.
Mol Biol Cell ; 17(1): 539-48, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16267268

RESUMEN

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN , ADN de Hongos/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Farmacorresistencia Fúngica , Endodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
10.
DNA Repair (Amst) ; 6(11): 1679-91, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17669696

RESUMEN

The yeast genes SLX5 and SLX8 were identified based on their requirement for viability in the absence of the Sgs1 DNA helicase. Loss of these genes results in genome instability, nibbled colonies, and other phenotypes associated with defects in sumoylation. The Slx5 and Slx8 proteins form a stable complex and each subunit contains a single RING-finger domain at its C-terminus. To determine the physiological function of the Slx5-8 complex, we explored its interaction with the SUMO pathway. Curing 2micro circle from the mutants, suppressed their nibbled colony phenotype and partially improved their growth rate, but did not affect their sensitivity to hydroxyurea. The increase in sumoylation observed in slx5Delta and slx8Delta mutants was found to be dependent on the Siz1 SUMO ligase. Physical interactions between the Slx5-8 complex and both Ubc9 and Smt3 were identified and characterized. Using in vitro reactions, we show that Slx5, Slx8, or the Slx5-8 complex stimulates the formation of SUMO chains and the sumoylation of a test substrate. Interestingly, a functional RING-finger domain is not required for this stimulation in vitro. These biochemical data demonstrate for the first time that the Slx5 and Slx8 complex is capable of interacting directly with the SUMO pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Dominios RING Finger , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Ubiquitina-Proteína Ligasas
11.
Genetics ; 176(4): 1993-2001, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17603121

RESUMEN

Mus81-Mms4 (Mus81-Eme1 in some species) is a heterodimeric DNA structure-specific endonuclease that has been implicated in meiotic recombination and processing of damaged replication forks in fungi. We generated and characterized mutations in Drosophila melanogaster mus81 and mms4. Unlike the case in fungi, we did not find any role for MUS81-MMS4 in meiotic crossing over. A possible role for this endonuclease in repairing double-strand breaks that arise during DNA replication is suggested by the finding that mus81 and mms4 mutants are hypersensitive to camptothecin; however, these mutants are not hypersensitive to other agents that generate lesions that slow or block DNA replication. In fungi, mus81, mms4, and eme1 mutations are synthetically lethal with mutations in genes encoding RecQ helicase homologs. Similarly, we found that mutations in Drosophila mus81 and mms4 are synthetically lethal with null mutations in mus309, which encodes the ortholog of the Bloom Syndrome helicase. Synthetic lethality is associated with high levels of apoptosis in proliferating tissues. Lethality and elevated apoptosis were partially suppressed by a mutation in spn-A, which encodes the ortholog of the strand invasion protein Rad51. These findings provide insights into the causes of synthetic lethality.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Intercambio Genético , Daño del ADN , Reparación del ADN , Replicación del ADN , Drosophila melanogaster/citología , Femenino , Genes de Insecto , Genes Letales , Masculino , Meiosis/genética , Mutagénesis Insercional , Recombinación Genética
12.
Mol Cell Biol ; 25(11): 4476-87, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15899853

RESUMEN

Genome stability requires a set of RecQ-Top3 DNA helicase-topoisomerase complexes whose sole budding yeast homolog is encoded by SGS1-TOP3. RMI1/NCE4 was identified as a potential intermediate in the SGS1-TOP3 pathway, based on the observation that strains lacking any one of these genes require MUS81 and MMS4 for viability. This idea was tested by confirming that sgs1 and rmi1 mutants display the same spectrum of synthetic lethal interactions, including the requirements for SLX1, SLX4, SLX5, and SLX8, and by demonstrating that rmi1 mus81 synthetic lethality is dependent on homologous recombination. On their own, mutations in RMI1 result in phenotypes that mimic those of sgs1 or top3 strains including slow growth, hyperrecombination, DNA damage sensitivity, and reduced sporulation. And like top3 strains, most rmi1 phenotypes are suppressed by mutations in SGS1. We show that Rmi1 forms a heteromeric complex with Sgs1-Top3 in yeast and that these proteins interact directly in a recombinant system. The Rmi1-Top3 complex is stable in the absence of the Sgs1 helicase, but the loss of either Rmi1 or Top3 in yeast compromises its partner's interaction with Sgs1. Biochemical studies demonstrate that recombinant Rmi1 is a structure-specific DNA binding protein with a preference for cruciform structures. We propose that the DNA binding specificity of Rmi1 plays a role in targeting Sgs1-Top3 to appropriate substrates.


Asunto(s)
ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/fisiología , Genoma Fúngico , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia Conservada , Daño del ADN , ADN Helicasas/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Datos de Secuencia Molecular , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , RecQ Helicasas , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética
13.
Nucleic Acids Res ; 34(19): 5541-51, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17020915

RESUMEN

SLX5 and SLX8 encode RING-finger proteins that were previously identified based on their requirement for viability in yeast cells lacking Sgs1 DNA helicase. Slx5 and Slx8 proteins are known to be required for genome stability and to physically interact in yeast extracts; however, their biochemical functions are unknown. To address this question we purified and characterized recombinant Slx5 and Slx8 proteins. Here we show that Slx5 and Slx8 form a heterodimeric complex with double-stranded DNA (dsDNA)-binding activity. Individually, only the Slx8 subunit displays this activity. Structure-function studies indicate that the DNA-binding activity requires only the N-terminal 160 amino acids of Slx8, but not its C-terminal RING-finger domain. Alleles of SLX8 that express the RING-finger domain alone show almost complete complementation in yeast indicating that this DNA-binding domain is not essential for this in vivo function. Consistent with these findings we show that Slx5 immunolocalizes to the nucleus and that a portion of the Slx8 protein co-fractionates with chromatin. These results suggest that Slx5-Slx8 may act directly on DNA to promote genome stability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/análisis , Proteínas Recombinantes/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas
14.
Nat Commun ; 9(1): 5016, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479332

RESUMEN

The repair of double-stranded DNA breaks (DSBs) by homologous recombination involves the formation of branched intermediates that can lead to crossovers following nucleolytic resolution. The nucleases Mus81-Mms4 and Yen1 are tightly controlled during the cell cycle to limit the extent of crossover formation and preserve genome integrity. Here we show that Yen1 is further regulated by sumoylation and ubiquitination. In vivo, Yen1 becomes sumoylated under conditions of DNA damage by the redundant activities of Siz1 and Siz2 SUMO ligases. Yen1 is also a substrate of the Slx5-Slx8 ubiquitin ligase. Loss of Slx5-Slx8 stabilizes the sumoylated fraction, attenuates Yen1 degradation at the G1/S transition, and results in persistent localization of Yen1 in nuclear foci. Slx5-Slx8-dependent ubiquitination of Yen1 occurs mainly at K714 and mutation of this lysine increases crossover formation during DSB repair and suppresses chromosome segregation defects in a mus81∆ background.


Asunto(s)
Intercambio Genético , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Segregación Cromosómica , Daño del ADN , Eliminación de Gen , Lisina/metabolismo , Unión Proteica , Especificidad por Sustrato , Sumoilación , Ubiquitinación
15.
Curr Biol ; 13(24): 2148-58, 2003 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-14680630

RESUMEN

BACKGROUND: Asf1 is a ubiquitous eukaryotic histone binding and deposition protein that mediates nucleosome formation in vitro and is required for genome stability in vivo. Studies in a variety of organisms have defined Asf1's role as a histone chaperone during DNA replication through specific interactions with histones H3/H4 and the histone deposition factor CAF-I. In addition to its role in replication, conserved interactions with proteins involved in chromatin silencing, transcription, chromatin remodeling, and DNA repair have also established Asf1 as an important component of a number of chromatin assembly and modulation complexes. RESULTS: We demonstrate that the highly conserved N-terminal domain of S. cerevisiae Asf1 (Asf1N) is the core region that mediates all tested functions of the full-length protein. The crystal structure of this core domain, determined to 1.5 A resolution, reveals a compact immunoglobulin-like beta sandwich fold topped by three helical linkers. The surface of Asf1 displays a conserved hydrophobic groove flanked on one side by an area of strong electronegative surface potential. These regions represent potential binding sites for histones and other interacting proteins. The structural model also allowed us to interpret mutagenesis studies of the human Asf1a/HIRA interaction and to functionally define the region of Asf1 responsible for Hir1-dependent telomeric silencing in budding yeast. CONCLUSIONS: The evolutionarily conserved, N-terminal 155 amino acids of histone deposition protein Asf1 are functional in vitro and in vivo. This core region of Asf1 adopts a compact immunoglobulin-fold structure with distinct surface characteristics, including a Hir protein binding region required for gene silencing.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Silenciador del Gen , Histonas/genética , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/aislamiento & purificación , Cromatografía , Cristalografía , Electroforesis en Gel de Poliacrilamida , Técnicas de Transferencia de Gen , Chaperonas Moleculares , Datos de Secuencia Molecular , Pruebas de Precipitina , Conformación Proteica , Saccharomyces cerevisiae , Alineación de Secuencia
16.
Mol Cell Biol ; 23(10): 3487-96, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12724407

RESUMEN

Mus81-Mms4 and Rad1-Rad10 are homologous structure-specific endonucleases that cleave 3' branches from distinct substrates and are required for replication fork stability and nucleotide excision repair, respectively, in the yeast Saccharomyces cerevisiae. We explored the basis of this biochemical and genetic specificity. The Mus81-Mms4 cleavage site, a nick 5 nucleotides (nt) 5' of the flap, is determined not by the branch point, like Rad1-Rad10, but by the 5' end of the DNA strand at the flap junction. As a result, the endonucleases show inverse substrate specificity; substrates lacking a 5' end within 4 nt of the flap are cleaved poorly by Mus81-Mms4 but are cleaved well by Rad1-10. Genetically, we show that both mus81 and sgs1 mutants are sensitive to camptothecin-induced DNA damage. Further, mus81 sgs1 synthetic lethality requires homologous recombination, as does suppression of mutant phenotypes by RusA expression. These data are most easily explained by a model in which the in vivo substrate of Mus81-Mms4 and Sgs1-Top3 is a 3' flap recombination intermediate downstream of replication fork collapse.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transactivadores/metabolismo , Secuencia de Bases , Daño del ADN , Enzimas Reparadoras del ADN , Dimerización , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Endonucleasas de ADN Solapado , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento , Especificidad por Sustrato , Factores de Tiempo , Rayos Ultravioleta
17.
Mutat Res ; 625(1-2): 1-19, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17555773

RESUMEN

Previous studies in yeast have suggested that the SGS1 DNA helicase or the Mus81-Mms4 structure-specific endonuclease is required to suppress the accumulation of lethal recombination intermediates during DNA replication. However, the structure of these intermediates and their mechanism of the suppression are unknown. To examine this reaction, we have isolated and characterized a temperature-sensitive (ts) allele of MUS81. At the non-permissive temperature, sgs1Deltamus81(ts) cells arrest at G(2)/M phase after going through S-phase. Bulk DNA replication appears complete but is defective since the Rad53 checkpoint kinase is strongly phosphorylated under these conditions. In addition, the induction of Rad53 hyper-phosphorylation by MMS was deficient at permissive temperature. Analysis of rDNA replication intermediates at the non-permissive temperature revealed elevated pausing of replication forks at the RFB in the sgs1Deltamus81(ts) mutant and a novel linear structure that was dependent on RAD52. Pulsed-field gel electrophoresis of the mus81Delta mutant revealed an expansion of the rDNA locus depending on RAD52, in addition to fragmentation of Chr XII in the sgs1Deltamus81(ts) mutant at permissive temperature. This is the first evidence that Mus81 functions in quality control of replication forks and that it is involved in the maintenance of rDNA repeats in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Reparación del ADN , Replicación del ADN/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Electroforesis en Gel de Campo Pulsado , Genes Fúngicos , Modelos Genéticos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae/citología , Temperatura
18.
Genetics ; 206(4): 1807-1821, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28550017

RESUMEN

Protein modification by the small ubiquitin-like modifier (SUMO) plays important roles in genome maintenance. In Saccharomyces cerevisiae, proper regulation of sumoylation is known to be essential for viability in certain DNA repair mutants. Here, we find the opposite result; proper regulation of sumoylation is lethal in certain DNA repair mutants. Yeast cells lacking the repair factors TDP1 and WSS1 are synthetically lethal due to their redundant roles in removing Top1-DNA covalent complexes (Top1ccs). A screen for suppressors of tdp1∆ wss1∆ synthetic lethality isolated mutations in genes known to control global sumoylation levels including ULP1, ULP2, SIZ2, and SLX5 The results suggest that alternative pathways of repair become available when sumoylation levels are altered. Curiously, both suppressor mutations that were isolated in the Slx5 subunit of the SUMO-targeted Ub ligase created new lysine residues. These "slx5-K" mutations localize to a 398 amino acid domain that is completely free of lysine, and they result in the auto-ubiquitination and partial proteolysis of Slx5. The decrease in Slx5-K protein leads to the accumulation of high molecular weight SUMO conjugates, and the residual Ub ligase activity is needed to suppress inviability presumably by targeting polysumoylated Top1ccs. This "lysine desert" is found in the subset of large fungal Slx5 proteins, but not its smaller orthologs such as RNF4. The lysine desert solves a problem that Ub ligases encounter when evolving novel functional domains.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Sumoilación , Ubiquitina-Proteína Ligasas/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dominios Proteicos , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
19.
DNA Repair (Amst) ; 4(2): 243-51, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15590332

RESUMEN

Mus81-Mms4/Eme1 is a conserved structure-specific endonuclease that functions in mitotic and meiotic recombination. It has been difficult to identify a single preferred substrate of this nuclease because it is active on a variety of DNA structures. In addition, it has been suggested that the specificity of the recombinant protein may differ from that of the native enzyme. Here, we addressed these issues with respect to Mus81-Mms4 from S. cerevisiae. At low substrate concentrations, Mus81-Mms4 was active on any substrate containing a free end adjacent to the branchpoint. This includes 3'-flap (3'F), regressed leading strand replication fork (RLe), regressed lagging strand replication fork (RLa), and nicked Holliday junction (nHJ) substrates. Kinetic analysis was used to quantitate differences between substrates. High Kcat/Km values were obtained only for substrates with a 5'-end near the branchpoint (i.e., 3'F, RLe, and nHJ); 10-fold lower values were obtained for nicked duplex (nD) and RLa substrates. Substrates lacking any free ends at the branch point generated Kcat/Km values that were four orders of magnitude lower than those of the preferred substrates. Native Mus81-Mms4 was partially purified from yeast cells and found to retain its preference for 3'F over intact HJ substrates. Taken together, these results narrow the range of optimal substrates for Mus81-Mms4 and indicate that, at least for S. cerevisae, the native and recombinant enzymes display similar substrate specificities.


Asunto(s)
Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transactivadores/metabolismo , Reparación del ADN , Endonucleasas de ADN Solapado , Cinética , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato
20.
DNA Repair (Amst) ; 2(12): 1321-35, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14642562

RESUMEN

Replication protein A (RPA) is a conserved single-stranded DNA (ssDNA) binding protein with well-characterized roles in DNA metabolism. RPA is phosphorylated in response to genotoxic stress and is required for efficient checkpoint function, although these aspects of RPA function are not well understood. We have investigated the association between RPA and the checkpoint kinase Mec1 in yeast. RPA and Mec1 were found to be physically associated during unperturbed cell growth and in response to DNA damage. Using a Mec1 immunoprecipitate (IP)-kinase assay, we show that the two large subunits, RPA1 and RPA2, are good substrates for Mec1 kinase. The major phosphorylation site of RPA1 was further investigated as it was found to be localized to its amino terminus (RPA1N), which is a non-ssDNA binding domain implicated in regulatory function. This phosphorylation site mapped to serine 178 and phosphorylation-defective mutant protein, expressed from rfa1-S178A, showed reduced physical interaction with Mec1. Phenotypic analysis in vivo revealed that the rfa1-S178A mutation affected the kinetics of RPA1 and Rad53 phosphorylation but did not otherwise affect the checkpoint response. We suggest that phosphorylation of RPA1N by Mec1 may function together with other checkpoint events to regulate the checkpoint response.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Daño del ADN , Reparación del ADN , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Pruebas de Precipitina , Proteínas Serina-Treonina Quinasas , Proteína de Replicación A , Saccharomyces cerevisiae/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA