Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 511(7508): 224-7, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25008531

RESUMEN

Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.


Asunto(s)
Anfibios/inmunología , Anfibios/microbiología , Quitridiomicetos/inmunología , Micosis/inmunología , Animales , Antígenos Fúngicos/inmunología , Proliferación Celular , Recuento de Linfocitos , Linfocitos/citología , Micosis/prevención & control , Densidad de Población , Análisis de Supervivencia
2.
Evol Appl ; 6(5): 832-841, 2013 07.
Artículo en Inglés | MEDLINE | ID: mdl-29387169

RESUMEN

Anthropogenic environmental change is a powerful and ubiquitous evolutionary force, so it is critical that we determine the extent to which organisms can evolve in response to anthropogenic environmental change and whether these evolutionary responses have associated costs. This issue is particularly relevant for species of conservation concern including many amphibians, which are experiencing global declines from many causes including widespread exposure to agrochemicals. We used a laboratory toxicity experiment to assess variation in sensitivity to two pesticides among wood frog (Lithobates sylvaticus) populations and a mesocosm experiment to ascertain whether resistance to pesticides is associated with decreased performance when animals experience competition and fear of predation. We discovered that wood frog populations closer to agriculture were more resistant to a common insecticide (chlorpyrifos), but not to a common herbicide (Roundup). We also found no evidence that this resistance carried a performance cost when facing competition and the fear of predation. To our knowledge, this is the first study demonstrating that organophosphate insecticide (the most commonly applied class of insecticides in the world) resistance increases with agricultural land use in an amphibian, which is consistent with an evolutionary response to agrochemicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA