Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37531237

RESUMEN

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Proteína Fosfatasa 1/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Glucosa , Glucógeno , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/complicaciones
2.
Am J Med Genet A ; 194(5): e63509, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38158391

RESUMEN

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.


Asunto(s)
Biología Computacional , Genómica , Humanos , Secuenciación del Exoma , Fenotipo , Genómica/métodos , Biología Computacional/métodos , Alelos
3.
Am J Bioeth ; 24(2): 69-90, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37155651

RESUMEN

Psychiatry is rapidly adopting digital phenotyping and artificial intelligence/machine learning tools to study mental illness based on tracking participants' locations, online activity, phone and text message usage, heart rate, sleep, physical activity, and more. Existing ethical frameworks for return of individual research results (IRRs) are inadequate to guide researchers for when, if, and how to return this unprecedented number of potentially sensitive results about each participant's real-world behavior. To address this gap, we convened an interdisciplinary expert working group, supported by a National Institute of Mental Health grant. Building on established guidelines and the emerging norm of returning results in participant-centered research, we present a novel framework specific to the ethical, legal, and social implications of returning IRRs in digital phenotyping research. Our framework offers researchers, clinicians, and Institutional Review Boards (IRBs) urgently needed guidance, and the principles developed here in the context of psychiatry will be readily adaptable to other therapeutic areas.


Asunto(s)
Trastornos Mentales , Psiquiatría , Humanos , Inteligencia Artificial , Trastornos Mentales/terapia , Comités de Ética en Investigación , Investigadores
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161264

RESUMEN

Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of ∼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled ∼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type-specific α-ß isoform combinations, including α3-ß1 in excitatory neurons and α3-ß2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.


Asunto(s)
Encéfalo/embriología , Encéfalo/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Femenino , Feto/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Lactante , Recién Nacido , Interneuronas/metabolismo , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Neocórtex/embriología , Neocórtex/enzimología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Fenotipo , Polimicrogiria/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , ATPasa Intercambiadora de Sodio-Potasio/genética
5.
PLoS Genet ; 17(7): e1009639, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34232960

RESUMEN

ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Hipertensión/genética , Enfermedades Pulmonares Intersticiales/genética , Animales , Niño , Femenino , Homocigoto , Humanos , Leucocitosis/genética , Leucocitosis/inmunología , Enfermedades Pulmonares Intersticiales/patología , Linfocitosis/genética , Linfocitosis/inmunología , Masculino , Ratones , Linaje , Secuenciación del Exoma , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
6.
Genet Med ; 24(4): 839-850, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027292

RESUMEN

PURPOSE: This study aimed to evaluate genetic contributions to sudden unexpected death in pediatrics (SUDP). METHODS: We phenotyped and performed exome sequencing for 352 SUDP cases. We analyzed variants in 294 "SUDP genes" with mechanisms plausibly related to sudden death. In a subset of 73 cases with parental data (trios), we performed exome-wide analyses and conducted cohort-wide burden analyses. RESULTS: In total, we identified likely contributory variants in 37 of 352 probands (11%). Analysis of SUDP genes identified pathogenic/likely pathogenic variants in 12 of 352 cases (SCN1A, DEPDC5 [2], GABRG2, SCN5A [2], TTN [2], MYBPC3, PLN, TNNI3, and PDHA1) and variants of unknown significance-favor-pathogenic in 17 of 352 cases. Exome-wide analyses of the 73 cases with family data additionally identified 4 de novo pathogenic/likely pathogenic variants (SCN1A [2], ANKRD1, and BRPF1) and 4 de novo variants of unknown significance-favor-pathogenic. Comparing cases with controls, we demonstrated an excess burden of rare damaging SUDP gene variants (odds ratio, 2.94; 95% confidence interval, 2.37-4.21) and of exome-wide de novo variants in the subset of 73 with trio data (odds ratio, 3.13; 95% confidence interval, 1.91-5.16). CONCLUSION: We provide strong evidence for a role of genetic factors in SUDP, involving both candidate genes and novel genes for SUDP and expanding phenotypes of disease genes not previously associated with sudden death.


Asunto(s)
Muerte Súbita , Pediatría , Proteínas Adaptadoras Transductoras de Señales , Niño , Preescolar , Proteínas de Unión al ADN , Exoma/genética , Humanos , Lactante , Recién Nacido , Fenotipo , Secuenciación del Exoma
7.
Mol Psychiatry ; 26(5): 1706-1718, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33597717

RESUMEN

Mendelian and early-onset severe psychiatric phenotypes often involve genetic variants having a large effect, offering opportunities for genetic discoveries and early therapeutic interventions. Here, the index case is an 18-year-old boy, who at 14 years of age had a decline in cognitive functioning over the course of a year and subsequently presented with catatonia, auditory and visual hallucinations, paranoia, aggression, mood dysregulation, and disorganized thoughts. Exome sequencing revealed a stop-gain mutation in RCL1 (NM_005772.4:c.370 C > T, p.Gln124Ter), encoding an RNA 3'-terminal phosphate cyclase-like protein that is highly conserved across eukaryotic species. Subsequent investigations across two academic medical centers identified eleven additional cases of RCL1 copy number variations (CNVs) with varying neurodevelopmental or psychiatric phenotypes. These findings suggest that dosage variation of RCL1 contributes to a range of neurological and clinical phenotypes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Adolescente , Variaciones en el Número de Copia de ADN/genética , Humanos , Masculino , Mutación/genética , Fenotipo , Secuenciación del Exoma
8.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098347

RESUMEN

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Asunto(s)
Eccema/diagnóstico , Eccema/genética , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Histona Desacetilasas/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas Represoras/genética , Adolescente , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Eccema/patología , Exoma/genética , Facies , Femenino , Genoma Humano/genética , Genómica/métodos , Trastornos del Crecimiento/patología , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Fenotipo , Secuenciación del Exoma
9.
J Med Internet Res ; 23(3): e21023, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724192

RESUMEN

BACKGROUND: 16p13.11 microduplication syndrome has a variable presentation and is characterized primarily by neurodevelopmental and physical phenotypes resulting from copy number variation at chromosome 16p13.11. Given its variability, there may be features that have not yet been reported. The goal of this study was to use a patient "self-phenotyping" survey to collect data directly from patients to further characterize the phenotypes of 16p13.11 microduplication syndrome. OBJECTIVE: This study aimed to (1) discover self-identified phenotypes in 16p13.11 microduplication syndrome that have been underrepresented in the scientific literature and (2) demonstrate that self-phenotyping tools are valuable sources of data for the medical and scientific communities. METHODS: As part of a large study to compare and evaluate patient self-phenotyping surveys, an online survey tool, Phenotypr, was developed for patients with rare disorders to self-report phenotypes. Participants with 16p13.11 microduplication syndrome were recruited through the Boston Children's Hospital 16p13.11 Registry. Either the caregiver, parent, or legal guardian of an affected child or the affected person (if aged 18 years or above) completed the survey. Results were securely transferred to a Research Electronic Data Capture database and aggregated for analysis. RESULTS: A total of 19 participants enrolled in the study. Notably, among the 19 participants, aggression and anxiety were mentioned by 3 (16%) and 4 (21%) participants, respectively, which is an increase over the numbers in previously published literature. Additionally, among the 19 participants, 3 (16%) had asthma and 2 (11%) had other immunological disorders, both of which have not been previously described in the syndrome. CONCLUSIONS: Several phenotypes might be underrepresented in the previous 16p13.11 microduplication literature, and new possible phenotypes have been identified. Whenever possible, patients should continue to be referenced as a source of complete phenotyping data on their condition. Self-phenotyping may lead to a better understanding of the prevalence of phenotypes in genetic disorders and may identify previously unreported phenotypes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Familia , Variación Biológica Poblacional , Estudios de Cohortes , Humanos , Fenotipo
10.
Hum Mol Genet ; 26(18): 3545-3552, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911200

RESUMEN

Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects.


Asunto(s)
Cardiomiopatía Dilatada/genética , Factor 1 de Elongación Peptídica/genética , Animales , Cardiomiopatía Dilatada/metabolismo , Discapacidades del Desarrollo/genética , Epilepsia/genética , Insuficiencia de Crecimiento/genética , Genómica , Homocigoto , Humanos , Modelos Animales , Mutación , Mutación Missense/genética , Factor 1 de Elongación Peptídica/metabolismo , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Genet Med ; 21(7): 1585-1593, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30514889

RESUMEN

PURPOSE: Diagnosing monogenic diseases facilitates optimal care, but can involve the manual evaluation of hundreds of genetic variants per case. Computational tools like Phrank expedite this process by ranking all candidate genes by their ability to explain the patient's phenotypes. To use these tools, busy clinicians must manually encode patient phenotypes from lengthy clinical notes. With 100 million human genomes estimated to be sequenced by 2025, a fast alternative to manual phenotype extraction from clinical notes will become necessary. METHODS: We introduce ClinPhen, a fast, high-accuracy tool that automatically converts clinical notes into a prioritized list of patient phenotypes using Human Phenotype Ontology (HPO) terms. RESULTS: ClinPhen shows superior accuracy and 20× speedup over existing phenotype extractors, and its novel phenotype prioritization scheme improves the performance of gene-ranking tools. CONCLUSION: While a dedicated clinician can process 200 patient records in a 40-hour workweek, ClinPhen does the same in 10 minutes. Compared with manual phenotype extraction, ClinPhen saves an additional 3-5 hours per Mendelian disease diagnosis. Providers can now add ClinPhen's output to each summary note attached to a filled testing laboratory request form. ClinPhen makes a substantial contribution to improvements in efficiency critically needed to meet the surging demand for clinical diagnostic sequencing.


Asunto(s)
Biología Computacional , Enfermedades Genéticas Congénitas/diagnóstico , Registros Médicos , Algoritmos , Humanos , Procesamiento de Lenguaje Natural , Fenotipo
12.
Am J Med Genet A ; 179(7): 1299-1303, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31012281

RESUMEN

Char syndrome is characterized by persistent patent ductus arteriosus (PDA) associated with hand-skeletal abnormalities and distinctive facial dysmorphism. Pathogenic variants in the transcription factor gene TFAP2B have been shown to cause Char syndrome; however, there is significant phenotypic variability linked to variant location. Here, we report a pediatric patient with a novel de novo variant in the fifth exon of TFAP2B, c.917C > T (p.Thr306Met), who presented with PDA, patent foramen ovale, postaxial polydactyly of the left fifth toe and clinodactyly of the left fourth toe, sensorineural hearing loss, scoliosis, dental anomalies, and central diabetes insipidus (CDI). CDI, scoliosis, and hearing loss have not previously been reported in a patient with Char syndrome, and while the association may be coincidental, this report expands the genotypes and potentially phenotypes associated with this syndrome.


Asunto(s)
Anomalías Múltiples/genética , Diabetes Insípida/genética , Conducto Arterioso Permeable/genética , Cara/anomalías , Dedos/anomalías , Mutación Missense , Factor de Transcripción AP-2/genética , Adolescente , Aberraciones Cromosómicas , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 10 , Femenino , Genotipo , Humanos , Fenotipo
13.
BMC Med Genet ; 19(1): 197, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424743

RESUMEN

BACKGROUND: TRRAP encodes a multidomain protein kinase that works as a genetic cofactor to influence DNA methylation patterns, DNA damage repair, and chromatin remodeling. TRRAP protein is vital to early neural developmental processes, and variants in this gene have been associated with schizophrenia and childhood disintegrative disorder. CASE PRESENTATION: Here, we report on a patient with a de novo nonsynonymous TRRAP single-nucleotide variant (EST00000355540.3:c.5957G > A, p.Arg1986Gln) and early onset major depression accompanied by a psychotic episode (before age 10) that occurred in the context of longer standing nonverbal learning disability and a past history of obsessions and compulsions. CONCLUSIONS: The de novo variant and presentation of very early onset psychosis indicate a rare Mendelian disorder inheritance model. The genotype and behavioral abnormalities of this patient are reviewed.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno del Espectro Autista/genética , Discapacidades para el Aprendizaje/genética , Proteínas Nucleares/genética , Trastorno Obsesivo Compulsivo/genética , Mutación Puntual , Trastornos Psicóticos/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Edad de Inicio , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/fisiopatología , Niño , Expresión Génica , Genotipo , Humanos , Discapacidades para el Aprendizaje/diagnóstico , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Análisis de la Aleatorización Mendeliana , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Trastorno Obsesivo Compulsivo/diagnóstico , Trastorno Obsesivo Compulsivo/fisiopatología , Fenotipo , Conformación Proteica , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/fisiopatología , Secuenciación del Exoma
14.
J Autoimmun ; 86: 116-119, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28942902

RESUMEN

BACKGROUND: Risk of autoimmune thyroid disease (AITD) is strongly heritable. Multiple genes confer increased risk for AITD, but a monogenic origin has not yet been described. We studied a family with apparent autosomal dominant, early onset Hashimoto thyroiditis. METHODS: The family was enrolled in an IRB-approved protocol. Whole exome sequencing was used to study the proband and an affected sibling. The identified variant was studied in other family members by Sanger sequencing. RESULTS: We identified a previously unreported splice site variant in the thyroglobulin gene (TG c.1076-1G > C). This variant was confirmed in all affected family members who underwent testing, and also noted in one unaffected child. The variant is associated with exon 9 skipping, resulting in a novel in-frame variant transcript of TG. CONCLUSION: We discovered a monogenic form of AITD associated with a splice site variant in the thyroglobulin gene. This finding raises questions about the origins of thyroid autoimmunity; possible explanations include increased immunogenicity of the mutated protein or thyroid toxicity with secondary development of anti-thyroid antibodies. Further study into the effects of this variant on thyroid function and thyroid autoimmunity are warranted.


Asunto(s)
Enfermedad de Hashimoto/genética , Proteínas de la Leche/genética , Mutación/genética , Isoformas de ARN/genética , Linfocitos T/inmunología , Tiroglobulina/genética , Adolescente , Adulto , Anciano , Autoanticuerpos/metabolismo , Células Cultivadas , Niño , Trastornos de los Cromosomas , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Linaje , Polimorfismo Genético , Secuenciación del Exoma , Adulto Joven
15.
Am J Med Genet A ; 176(12): 2623-2629, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30151950

RESUMEN

KIF26B is a member of the kinesin superfamily with evolutionarily conserved functions in controlling aspects of embryogenesis, including the development of the nervous system, though its function is incompletely understood. We describe an infant with progressive microcephaly, pontocerebellar hypoplasia, and arthrogryposis secondary to the involvement of anterior horn cells and ventral (motor) nerves. We performed whole exome sequencing on the trio and identified a de novo KIF26B missense variant, p.Gly546Ser, in the proband. This variant alters a highly conserved amino acid residue that is part of the phosphate-binding loop motif and motor-like domain and is deemed pathogenic by several in silico methods. Functional analysis of the variant protein in cultured cells revealed a reduction in the KIF26B protein's ability to promote cell adhesion, a defect that potentially contributes to its pathogenicity. Overall, KIF26B may play a critical role in the brain development and, when mutated, cause pontocerebellar hypoplasia with arthrogryposis.


Asunto(s)
Cinesinas/genética , Atrofias Olivopontocerebelosas/genética , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/genética , Secuencia de Aminoácidos , Animales , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Adhesión Celular , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Cinesinas/química , Imagen por Resonancia Magnética/métodos , Ratones , Modelos Moleculares , Conformación Proteica , Secuenciación del Exoma
16.
Epilepsia ; 59(4): e56-e62, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29601086

RESUMEN

We identified SCN1A variants in 2 infants who died of sudden infant death syndrome (SIDS) with hippocampal abnormalities from an exome sequencing study of 10 cases of SIDS but no history of seizures. One harbored SCN1A G682V, and the other had 2 SCN1A variants in cis: L1296M and E1308D, a variant previously associated with epilepsy. Functional evaluation in a heterologous expression system demonstrated partial loss of function for both G682V and the compound variant L1296M/E1308D. Our cases represent a novel association between SCN1A and SIDS, extending the SCN1A spectrum from epilepsy to SIDS. Our findings provide insights into SIDS and support genetic evaluation focused on epilepsy genes in SIDS.


Asunto(s)
Variación Genética/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Muerte Súbita del Lactante/diagnóstico , Muerte Súbita del Lactante/genética , Femenino , Humanos , Lactante
17.
J Hum Genet ; 62(2): 243-252, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27708273

RESUMEN

The current study characterizes a cohort of limb-girdle muscular dystrophy (LGMD) in the United States using whole-exome sequencing. Fifty-five families affected by LGMD were recruited using an institutionally approved protocol. Exome sequencing was performed on probands and selected parental samples. Pathogenic mutations and cosegregation patterns were confirmed by Sanger sequencing. Twenty-two families (40%) had novel and previously reported pathogenic mutations, primarily in LGMD genes, and also in genes for Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, congenital myopathy, myofibrillar myopathy, inclusion body myopathy and Pompe disease. One family was diagnosed via clinical testing. Dominant mutations were identified in COL6A1, COL6A3, FLNC, LMNA, RYR1, SMCHD1 and VCP, recessive mutations in ANO5, CAPN3, GAA, LAMA2, SGCA and SGCG, and X-linked mutations in DMD. A previously reported variant in DMD was confirmed to be benign. Exome sequencing is a powerful diagnostic tool for LGMD. Despite careful phenotypic screening, pathogenic mutations were found in other muscle disease genes, largely accounting for the increased sensitivity of exome sequencing. Our experience suggests that broad sequencing panels are useful for these analyses because of the phenotypic overlap of many neuromuscular conditions. The confirmation of a benign DMD variant illustrates the potential of exome sequencing to help determine pathogenicity.


Asunto(s)
Exoma/genética , Pruebas Genéticas/métodos , Distrofia Muscular de Cinturas/diagnóstico , Distrofia Muscular de Cinturas/genética , Secuencia de Bases , Miopatías Distales/diagnóstico , Miopatías Distales/genética , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Humanos , Masculino , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Mutación/genética , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Análisis de Secuencia de ADN/métodos , Estados Unidos
18.
Muscle Nerve ; 55(5): 761-765, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27668699

RESUMEN

INTRODUCTION: Congenital hypomyelinating neuropathy (CHN) is a rare congenital neuropathy that presents in the neonatal period and has been linked previously to mutations in several genes associated with myelination. A recent study has linked 4 homozygous frameshift mutations in the contactin-associated protein 1 (CNTNAP1) gene with this condition. METHODS: We report a neonate with CHN who was found to have absent sensory nerve and compound muscle action potentials and hypomyelination on nerve biopsy. RESULTS: On whole exome sequencing, we identified a novel CNTNAP1 homozygous missense mutation (p.Arg388Pro) in the proband, and both parents were carriers. Molecular modeling suggests that this variant disrupts a ß-strand to cause an unstable structure and likely significant changes in protein function. CONCLUSIONS: This report links a missense CNTNAP1 variant to the disease phenotype previously associated only with frameshift mutations. Muscle Nerve 55: 761-765, 2017.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación Missense , Potenciales de Acción/fisiología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Electromiografía , Resultado Fatal , Humanos , Recién Nacido , Masculino , Neuronas Motoras/fisiología , Conducción Nerviosa/fisiología
19.
Neurogenetics ; 17(1): 11-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26395884

RESUMEN

Mutations in the KCNA1 gene are known to cause episodic ataxia/myokymia syndrome type 1 (EA1). Here, we describe two families with unique presentations who were enrolled in an IRB-approved study, extensively phenotyped, and whole exome sequencing (WES) performed. Family 1 had a diagnosis of isolated cataplexy triggered by sudden physical exertion in multiple affected individuals with heterogeneous neurological findings. All enrolled affected members carried a KCNA1 c.941T>C (p.I314T) mutation. Family 2 had an 8-year-old patient with muscle spasms with rigidity for whom WES revealed a previously reported heterozygous missense mutation in KCNA1 c.677C>G (p.T226R), confirming the diagnosis of EA1 without ataxia. WES identified variants in KCNA1 that explain both phenotypes expanding the phenotypic spectrum of diseases associated with mutations of this gene. KCNA1 mutations should be considered in patients of all ages with episodic neurological phenotypes, even when ataxia is not present. This is an example of the power of genomic approaches to identify pathogenic mutations in unsuspected genes responsible for heterogeneous diseases.


Asunto(s)
Ataxia/genética , Cataplejía/genética , Canal de Potasio Kv.1.1/genética , Mutación , Miocimia/genética , Adolescente , Adulto , Niño , Femenino , Heterogeneidad Genética , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Fenotipo , Adulto Joven
20.
Am J Hum Genet ; 93(6): 1108-17, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268659

RESUMEN

Nemaline myopathy (NM) is a rare congenital muscle disorder primarily affecting skeletal muscles that results in neonatal death in severe cases as a result of associated respiratory insufficiency. NM is thought to be a disease of sarcomeric thin filaments as six of eight known genes whose mutation can cause NM encode components of that structure, however, recent discoveries of mutations in non-thin filament genes has called this model in question. We performed whole-exome sequencing and have identified recessive small deletions and missense changes in the Kelch-like family member 41 gene (KLHL41) in four individuals from unrelated NM families. Sanger sequencing of 116 unrelated individuals with NM identified compound heterozygous changes in KLHL41 in a fifth family. Mutations in KLHL41 showed a clear phenotype-genotype correlation: Frameshift mutations resulted in severe phenotypes with neonatal death, whereas missense changes resulted in impaired motor function with survival into late childhood and/or early adulthood. Functional studies in zebrafish showed that loss of Klhl41 results in highly diminished motor function and myofibrillar disorganization, with nemaline body formation, the pathological hallmark of NM. These studies expand the genetic heterogeneity of NM and implicate a critical role of BTB-Kelch family members in maintenance of sarcomeric integrity in NM.


Asunto(s)
Mutación , Miofibrillas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/genética , Transducción de Señal , Ubiquitinación , Adolescente , Animales , Niño , Preescolar , Proteínas del Citoesqueleto , Resultado Fatal , Femenino , Expresión Génica , Orden Génico , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Miopatías Nemalínicas/diagnóstico , Conformación Proteica , Proteínas/química , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA