Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochim Biophys Acta ; 1858(7 Pt B): 1594-609, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26972046

RESUMEN

We review experimental and simulation approaches that have been used to determine curvature generation and remodeling of lipid bilayers by membrane-bending proteins. Particular emphasis is placed on the complementary approaches used to study α-Synuclein (αSyn), a major protein involved in Parkinson's disease (PD). Recent cellular and biophysical experiments have shown that the protein 1) deforms the native structure of mitochondrial and model membranes; and 2) inhibits vesicular fusion. Today's advanced experimental and computational technology has made it possible to quantify these protein-induced changes in membrane shape and material properties. Collectively, experiments, theory and multi-scale simulation techniques have established the key physical determinants of membrane remodeling and rigidity: protein binding energy, protein partition depth, protein density, and membrane tension. Despite the exciting and significant progress made in recent years in these areas, challenges remain in connecting biophysical insights to the cellular processes that lead to disease. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura , Sitios de Unión , Simulación por Computador , Fluidez de la Membrana , Modelos Químicos , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos
2.
Biochim Biophys Acta Biomembr ; 1859(4): 529-536, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27742354

RESUMEN

Using molecular dynamics simulations, we have explored the effect of asymmetric lipids-specifically those that contain one polyunsaturated (PUFA) and one saturated fatty acid chain-on phase separation in heterogeneous membranes. These lipids are prevalent in neuronal membranes, particularly in synaptic membranes, where the Parkinson's Disease protein α-Synuclein (αS) is found. We have therefore explored the relationship between asymmetric, PUFA-containing lipids, and αS. The simulations show that asymmetric lipids partition to the liquid disordered (Ld) phase of canonical raft mixtures because of the highly disordered PUFA chain. In the case of a membrane built to mimic the lipid composition of a synaptic vesicle, the PUFA-containing asymmetric lipids completely disrupt phase separation. Because αS is positively charged, we show that it partitions with negatively charged lipids, regardless of the saturation state of the chains. Additionally, αS preferentially associates with the polyunsaturated fatty acid tails of both charged and neutral lipids. This is a consequence of those chains' ability to accommodate the void beneath the amphipathic helix. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , alfa-Sinucleína/química , Materiales Biomiméticos/química , Humanos , Microdominios de Membrana/química , Conformación Molecular , Transición de Fase , Unión Proteica , Electricidad Estática
3.
SLAS Discov ; 22(8): 950-961, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28530838

RESUMEN

Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that binds tumor necrosis factor or lymphotoxin-alpha and plays a critical role in regulating the inflammatory response. Upregulation of these ligands is associated with inflammatory and autoimmune diseases. Current treatments reduce symptoms by sequestering free ligands, but this can cause adverse side effects by unintentionally inhibiting ligand binding to off-target receptors. Hence, there is a need for new small molecules that specifically target the receptors, rather than the ligands. Here, we developed a TNFR1 FRET biosensor expressed in living cells to screen compounds from the NIH Clinical Collection. We used an innovative high-throughput fluorescence lifetime screening platform that has exquisite spatial and temporal resolution to identify two small-molecule compounds, zafirlukast and triclabendazole, that inhibit the TNFR1-induced IκBα degradation and NF-κB activation. Biochemical and computational docking methods were used to show that zafirlukast disrupts the interactions between TNFR1 pre-ligand assembly domain (PLAD), whereas triclabendazole acts allosterically. Importantly, neither compound inhibits ligand binding, proving for the first time that it is possible to inhibit receptor activation by targeting TNF receptor-receptor interactions. This strategy should be generally applicable to other members of the TNFR superfamily, as well as to oligomeric receptors in general.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Técnicas Biosensibles , Dimerización , Evaluación Preclínica de Medicamentos , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Indoles , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Mutantes/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fenilcarbamatos , Dominios Proteicos , Proteolisis/efectos de los fármacos , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Sulfonamidas , Compuestos de Tosilo/farmacología , Triclabendazol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA