Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Genet ; 93(2): 396-400, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28857146

RESUMEN

Deficiencies of mitochondrial respiratory chain complex I frequently result in leukoencephalopathy in young patients, and different mutations in the genes encoding its subunits are still being uncovered. We report 2 patients with cystic leukoencephalopathy and complex I deficiency with recessive mutations in NDUFA2, an accessory subunit of complex I. The first patient was initially diagnosed with a primary systemic carnitine deficiency associated with a homozygous variant in SLC22A5, but also exhibited developmental regression and cystic leukoencephalopathy, and an additional diagnosis of complex I deficiency was suspected. Biochemical analysis confirmed a complex I deficiency, and whole-exome sequencing revealed a homozygous mutation in NDUFA2 (c.134A>C, p.Lys45Thr). Review of a biorepository of patients with unsolved genetic leukoencephalopathies who underwent whole-exome or genome sequencing allowed us to identify a second patient with compound heterozygous mutations in NDUFA2 (c.134A>C, p.Lys45Thr; c.225del, p.Asn76Metfs*4). Only 1 other patient with mutations in NDUFA2 and a different phenotype (Leigh syndrome) has previously been reported. This is the first report of cystic leukoencephalopathy caused by mutations in NDUFA2.


Asunto(s)
Secuenciación del Exoma , Leucoencefalopatías/genética , Mitocondrias/genética , NADH Deshidrogenasa/genética , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/genética , Enfermedad de Leigh/fisiopatología , Leucoencefalopatías/fisiopatología , Masculino , Mitocondrias/patología , Mutación , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética
2.
Mol Genet Metab Rep ; 5: 85-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28649549

RESUMEN

Fatty acid oxidation disorders and lipin-1 deficiency are the commonest genetic causes of rhabdomyolysis in children. We describe a lipin-1-deficient boy with recurrent, severe rhabdomyolytic episodes from the age of 4 years. Analysis of the LPIN1 gene that encodes lipin-1 revealed a novel homozygous frameshift mutation in exon 9, c.1381delC (p.Leu461SerfsX47), and complete uniparental isodisomy of maternal chromosome 2. This mutation is predicted to cause complete lipin-1 deficiency. The patient had six rhabdomyolytic crises, with creatine kinase (CK) levels up to 300,000 U/L (normal, 30 to 200). Plasma CK remained elevated between crises. A treatment protocol was instituted, with early aggressive monitoring, hydration, electrolyte replacement and high caloric, high carbohydrate intake. The patient received dexamethasone during two crises, which was well-tolerated and in these episodes, peak CK values were lower than in preceding episodes. Studies of anti-inflammatory therapy may be indicated in lipin-1 deficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA