Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Crit Rev Biotechnol ; 41(2): 155-171, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33530761

RESUMEN

Phenolic compounds (PCs) are a family of secondary metabolites with recognized biological activities making them attractive for the biomedical "red" biotechnology. The development of the eco-sustainable production of natural bioactive metabolites requires using easy cultivable organisms, such as microalgae, which represents one of the most promising sources for biotechnological applications. Microalgae are photosynthetic organisms inhabiting aquatic systems, displaying high levels of biological and functional diversities, and are well-known producers of fatty acids and carotenoids. They are also rich in other families of bioactive molecules e.g. phenolic compounds. Microalgal PCs however are less investigated than other molecular components. This study aims to provide a state-of-art picture of the actual knowledge on microalgal phenolic compounds, reviewing information on the PC content variety and chemodiversity in microalgae, their environmental modulation, and we aim to report discuss data on PC biosynthetic pathways. We report the challenges of promoting microalgae as a relevant source of natural PCs, further enhancing the interests of microalgal "biofactories" for biotechnological applications (i.e. nutraceutical, pharmacological, or cosmeceutical products).


Asunto(s)
Microalgas , Vías Biosintéticas , Biotecnología , Carotenoides/metabolismo , Suplementos Dietéticos , Microalgas/metabolismo
2.
Mar Drugs ; 19(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206447

RESUMEN

Photochemoprevention can be a valuable approach to counteract the damaging effects of environmental stressors (e.g., UV radiations) on the skin. Pigments are bioactive molecules, greatly attractive for biotechnological purposes, and with promising applications for human health. In this context, marine microalgae are a valuable alternative and eco-sustainable source of pigments that still need to be taken advantage of. In this study, a comparative in vitro photochemopreventive effects of twenty marine pigments on carcinogenic melanoma model cell B16F0 from UV-induced injury was setup. Pigment modulation of the intracellular reactive oxygen species (ROS) concentration and extracellular release of nitric oxide (NO) was investigated. At the cell signaling level, interleukin 1-ß (IL-1ß) and matrix metallopeptidase 9 protein (MMP-9) protein expression was examined. These processes are known to be involved in the signaling pathway, from UV stress to cancer induction. Diatoxanthin resulted the best performing pigment in lowering MMP-9 levels and was able to strongly lower IL-1ß. This study highlights the pronounced bioactivity of the exclusively aquatic carotenoid diatoxanthin, among the others. It is suggested increasing research efforts on this molecule, emphasizing that a deeper integration of plant ecophysiological studies into a biotechnological context could improve the exploration and exploitation of bioactive natural products.


Asunto(s)
Melanoma/prevención & control , Microalgas , Neoplasias Cutáneas/prevención & control , Protectores Solares/farmacología , Xantófilas/farmacología , Animales , Organismos Acuáticos , Humanos , Interleucina-1beta/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Ratones , Modelos Animales , Fitoterapia , Protectores Solares/uso terapéutico , Xantófilas/uso terapéutico
3.
Mar Drugs ; 19(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467094

RESUMEN

Marine organisms with fast growth rates and great biological adaptive capacity might have biotechnological interests, since ecological competitiveness might rely on enhanced physiological or biochemical processes' capability promoting protection, defense, or repair intracellular damages. The invasive seagrass Halophila stipulacea, a non-indigenous species widespread in the Mediterranean Sea, belongs to this category. This is the premise to investigate the biotechnological interest of this species. In this study, we investigated the antioxidant activity in vitro, both in scavenging reactive oxygen species and in repairing damages from oxidative stress on the fibroblast human cell line WI-38. Together with the biochemical analysis, the antioxidant activity was characterized by the study of the expression of oxidative stress gene in WI-38 cells in presence or absence of the H. stipulacea extract. Concomitantly, the pigment pool of the extracts, as well as their macromolecular composition was characterized. This study was done separately on mature and young leaves. Results indicated that mature leaves exerted a great activity in scavenging reactive oxygen species and repairing damages from oxidative stress in the WI-38 cell line. This activity was paralleled to an enhanced carotenoids content in the mature leaf extracts and a higher carbohydrate contribution to organic matter. Our results suggest a potential of the old leaves of H. stipulacea as oxidative stress damage protecting or repair agents in fibroblast cell lines. This study paves the way to transmute the invasive H. stipulacea environmental threat in goods for human health.


Asunto(s)
Antioxidantes/farmacología , Hydrocharitaceae , Especies Introducidas , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Antioxidantes/aislamiento & purificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Feto , Humanos , Estrés Oxidativo/fisiología , Extractos Vegetales/aislamiento & purificación , Plantas Tolerantes a la Sal
4.
Microb Cell Fact ; 19(1): 201, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138823

RESUMEN

BACKGROUND: Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT: Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION: Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.


Asunto(s)
Productos Biológicos/metabolismo , Microalgas/química , Vitaminas/metabolismo , Biocombustibles , Biotecnología/métodos , Suplementos Dietéticos , Humanos , Microalgas/metabolismo
5.
Mar Drugs ; 18(9)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962291

RESUMEN

Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.


Asunto(s)
Antioxidantes/aislamiento & purificación , Diatomeas/metabolismo , Luz , Metilhistidinas/aislamiento & purificación , Oscuridad , Glutatión/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
6.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218067

RESUMEN

The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, ß-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.


Asunto(s)
Antioxidantes/farmacología , Compuestos de Bifenilo/farmacología , Células Epiteliales/efectos de los fármacos , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Picratos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chlorophyta/química , Cromanos/farmacología , Células Epiteliales/metabolismo , Humanos , Masculino , Extractos Vegetales/farmacología , Próstata/citología , Próstata/metabolismo , Sustancias Protectoras/farmacología , beta Caroteno/farmacología
7.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171852

RESUMEN

Growing interest in hypertension-one of the main factors characterizing the cardiometabolic syndrome (CMS)-and anti-hypertensive drugs raised from the emergence of a new coronavirus, SARS-CoV-2, responsible for the COVID19 pandemic. The virus SARS-CoV-2 employs the Angiotensin-converting enzyme 2 (ACE2), a component of the RAAS (Renin-Angiotensin-Aldosterone System) system, as a receptor for entry into the cells. Several classes of synthetic drugs are available for hypertension, rarely associated with severe or mild adverse effects. New natural compounds, such as peptides, might be useful to treat some hypertensive patients. The main feature of ACE inhibitory peptides is the location of the hydrophobic residue, usually Proline, at the C-terminus. Some already known bioactive peptides derived from marine resources have potential ACE inhibitory activity and can be considered therapeutic agents to treat hypertension. Peptides isolated from marine vertebrates, invertebrates, seaweeds, or sea microorganisms displayed important biological activities to treat hypertensive patients. Here, we reviewed the anti-hypertensive activities of bioactive molecules isolated/extracted from marine organisms and discussed the associated molecular mechanisms involved. We also examined ACE2 modulation in sight of SARS2-Cov infection prevention.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Antivirales/química , Hipertensión/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antihipertensivos/uso terapéutico , Antivirales/farmacología , COVID-19/prevención & control , Peces/metabolismo , Halobacteriales/química , Humanos , Simulación del Acoplamiento Molecular , Oncorhynchus keta/metabolismo , Péptidos/química , Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Pepinos de Mar/química , Undaria/química
8.
Mar Drugs ; 16(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545093

RESUMEN

Marine dinoflagellates are a valuable source of bioactive molecules. Many species produce cytotoxic compounds and some of these compounds have also been investigated for their anticancer potential. Here, we report the first investigation of the toxic dinoflagellate Alexandrium minutum as source of water-soluble compounds with antiproliferative activity against human lung cancer cells. A multi-step enrichment of the phenol⁻water extract yielded a bioactive fraction with specific antiproliferative effect (IC50 = 0.4 µg·mL-1) against the human lung adenocarcinoma cells (A549 cell line). Preliminary characterization of this material suggested the presence of glycoprotein with molecular weight above 20 kDa. Interestingly, this fraction did not exhibit any cytotoxicity against human normal lung fibroblasts (WI38). Differential gene expression analysis in A549 cancer cells suggested that the active fraction induces specific cell death, triggered by mitochondrial autophagy (mitophagy). In agreement with the cell viability results, gene expression data also showed that no mitophagic event was activated in normal cells WI38.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos/química , Dinoflagelados/química , Toxinas Marinas/farmacología , Mitofagia/efectos de los fármacos , Células A549 , Antineoplásicos/aislamiento & purificación , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/uso terapéutico
9.
Mar Drugs ; 16(8)2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-30042358

RESUMEN

Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps, lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their immune system and increase their fertility. From the nutritional point of view, astaxanthin is considered one of the strongest antioxidants in nature, due to its high scavenging potential of free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.


Asunto(s)
Organismos Acuáticos , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Radicales Libres/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/uso terapéutico
10.
Mar Drugs ; 16(6)2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29843412

RESUMEN

The carotenoid astaxanthin has strong antioxidant properties with beneficial effects for various degenerative diseases. This carotenoid is produced by some microalgae species when cultivated in particular conditions, and, interestingly, it is a predominant carotenoid in aquatic animals throughout a broad range of taxa. Recently, astaxanthin was detected in the eggs of the sea urchin Arbacia lixula in relevant concentrations when this organism was maintained in culture. These results have paved the way for deeper research into astaxanthin production by this species, particularly in regards to how astaxanthin production can be modulated by diet. Results showed that the highest content of astaxanthin in eggs was observed in sea urchins fed on a diet enriched with Spirulina platensis. This result was confirmed by the high antioxidant activity recorded in the egg extracts of these animals. Our results suggest that (i) the sea urchin A. lixula is able to synthesize astaxanthin from precursors obtained from food, and (ii) it is possible to modulate the astaxanthin accumulation in sea urchin eggs by modifying the proportions of different food ingredients provided in their diet. This study demonstrates the large potential of sea urchin cultivation for the eco-sustainable production of healthy supplements for nutraceutical applications.


Asunto(s)
Arbacia/metabolismo , Biotecnología/métodos , Suplementos Dietéticos , Spirulina , Animales , Xantófilas/biosíntesis
11.
Environ Microbiol ; 19(2): 611-627, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27712003

RESUMEN

Photosynthesis is known to produce reactive oxygen species together with the transformation of light into biochemical energy. To fill the gap of the knowledge on the protective antioxidant network of microalgae, a series of experiments to explore the role of spectral composition and intensity of light in the modulation of the photodefence mechanisms developed by the coastal diatom Skeletonema marinoi were performed. The modulation of the total phenolic content, ascorbic acid and the enzymes glutathione reductase, catalase, ascorbate peroxidase and superoxide dismutase together with xanthophyll cycle and non-photochemical quenching in response to variations in the light environment were analysed. Most of the enzymes' activity was promptly affected by the red light. Yet, the monochromatic high intensity blue light enhanced the synthesis of total phenolic content and ascorbic acid in parallel to the xanthophyll cycle activity. This study reveals the dual effects of spectral composition and intensity of light on the modulation of photoprotective mechanisms. Diatoms developed a complementary and/or alternative tuning processes to cope with the variable light environment they experience in the water column. They also provided valuable insights into light manipulation regimes for diatom cultivation that will help to maximize production of bioactive molecules.


Asunto(s)
Diatomeas/fisiología , Diatomeas/efectos de la radiación , Luz , Antioxidantes , Catalasa , Diatomeas/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Microalgas/metabolismo , Fenoles/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Xantófilas
12.
Mar Drugs ; 15(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635649

RESUMEN

Several echinoderms, including sea urchins, are valuable sources of bioactive compounds but their nutraceutical potential is largely unexplored. In fact, the gonads of some sea urchin species contain antioxidants including carotenoids and polyhydroxylated naphthoquinones (PHNQ's), such as echinochrome A. Astaxanthin is known to have particular bioactivity for the prevention of neurodegenerative diseases. This carotenoid is produced by microalgae, while several marine invertebrates can bioaccumulate or synthetize it from metabolic precursors. We determined the carotenoid content and analyzed the bioactivity potential of non-harvested Atlantic-Mediterranean sea urchin Arbacia lixula. The comparison of methanol crude extracts obtained from eggs of farmed and wild specimens revealed a higher bioactivity in farmed individuals fed with a customized fodder. HPLC-analysis revealed a high concentration of astaxanthin (27.0 µg/mg), which was the only pigment observed. This study highlights the potential of farmed A. lixula as a new source of the active stereoisomer of astaxanthin.


Asunto(s)
Arbacia/química , Erizos de Mar/química , Alimentación Animal , Animales , Carotenoides/química , Gónadas/química , Xantófilas/química
13.
Environ Microbiol ; 18(12): 4412-4425, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27198623

RESUMEN

Many studies on photoacclimation examine the pigment responses to changes in light intensity, but variations in light climate in the aquatic environment are also related to changes in spectral composition. We have employed a high-performance liquid chromatography method with improved resolution towards chlorophyll c and fucoxanthin-related xanthophylls to examine the pigment composition of Emiliania huxleyi CCMP 370 under different light intensities and spectral qualities. To maintain its photosynthetic performance, E. huxleyi CCMP370 promotes drastic pigment changes that can be either the interconversion of pigments in pools with the same basic chromophoric structure (Fucoxanthin type or chlorophyll c type), or the ex novo synthesis (Diatoxanthin). These changes are linked either to variations in light quality (Fucoxanthin related xanthophylls) or in light intensity (chlorophyll c3 /Monovinyl chlorophyll c3 , Diadinoxanthin/Diatoxanthin, ß,ɛ-carotene/ ß,ß-carotene). Fucoxanthin and 19'-hexanoyloxyfucoxanthin proportions were highly dependent on spectral conditions. Whereas Fucoxanthin dominated in green and red light, 19'-hexanoyloxyfucoxanthin prevailed under blue spectral conditions. Our results suggest that the huge pigment diversity enhanced the photoacclimative capacities of E. huxleyi to efficiently perform under changing light environments. The ubiquity and success in the global ocean as well as the capacity of E. huxleyi to form large surface blooms might be associated to the plasticity described here.


Asunto(s)
Clorofila/metabolismo , Haptophyta/metabolismo , Xantófilas/metabolismo , Haptophyta/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis
14.
Mar Drugs ; 12(3): 1641-75, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24663117

RESUMEN

In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field. Lastly, we propose new approaches to enhancing microalgal growth, photosynthesis, and synthesis of valuable products used in biotechnological fields, mainly focusing on culture conditions, especially light manipulations and genetic modifications.


Asunto(s)
Biodiversidad , Biotecnología/métodos , Microalgas/química , Ecología , Ambiente , Microalgas/clasificación , Microalgas/genética , Microalgas/crecimiento & desarrollo , Fotosíntesis , Agua de Mar/microbiología
15.
Mar Drugs ; 12(7): 4165-87, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25026265

RESUMEN

Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (PUA), a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA). Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control) with OCTA concentrations twice the EC50 for growth at 24 h (20 µM). The synthesis of carotenoids belonging to the xanthophyll cycle (XC) was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT) produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA), while PT (non-PUA producing species) perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities.


Asunto(s)
Aldehídos/farmacología , Diatomeas/efectos de los fármacos , Óxido Nítrico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Fotosíntesis
16.
Comput Struct Biotechnol J ; 21: 1092-1101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36789263

RESUMEN

Phytohormones represent a group of secondary metabolites with different chemical structures, in which belong auxins, cytokinins, gibberellins, or brassinosteroids. In higher plants, they cover active roles in growth or defense function, while their potential benefits for human health protection were noted for some phytohormones and little explored for many others. In this study, we developed a target fishing strategy on fifty-three selected naturally occurring phytohormones covering different families towards proteins involved in key cellular functions related to human metabolism and health protection/disease. This in silico analysis strategy aims to screen the potential human health-driven bioactivity of more than fifty phytohormones through the analysis of their interactions with specific targets. From this analysis, twenty-eight human targets were recovered. Some targets e.g., the proteins mitochondrial glutamate dehydrogenase (GLUD1) or nerve growth factor (NGF) bound many phytohormones, highlighting their involvement in amino acid metabolism and/or in the maintenance or survival of neurons. Conversely, some phytohormones specifically interacted with some proteins, e.g., SPRY domain-containing SOCS box protein 2 (SPSB2) or Inosine-5'-monophosphate dehydrogenase 1 (IMPDH1), both involved in human immune response. They were then investigated with a molecular docking analysis approach. Our bioprospecting study indicated that many phytohormones may endow human health benefits, with potential functional role in multiple cellular processes including immune response and cell cycle progression.

17.
Biotechnol Biofuels Bioprod ; 16(1): 28, 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36803279

RESUMEN

BACKGROUND: Microalgae represent a suitable and eco-sustainable resource for human needs thanks to their fast growth ability, together with the great diversity in species and intracellular secondary bioactive metabolites. These high-added-value compounds are of great interest for human health or animal feed. The intracellular content of these valuable compound families is tightly associated with the microalgal biological state and responds to environmental cues, e.g., light. Our study develops a Biotechnological response curve strategy exploring the bioactive metabolites synthesis in the marine cyanobacterium Spirulina subsalsa over a light energy gradient. The Relative Light energy index generated in our study integrates the red, green and blue photon flux density with their relative photon energy. The Biotechnological response curve combined biochemical analysis of the macromolecular composition (total protein, lipid, and carbohydrate content), total sterols, polyphenols and flavonoids, carotenoids, phenolic compounds, vitamins (A, B1, B2, B6, B9, B12, C, D2, D3, E, H, and K1), phycobiliproteins, together with the antioxidant activity of the biomass as well as the growth ability and photosynthesis. RESULTS: Results demonstrated that light energy significantly modulate the biochemical status of the microalga Spirulina subsalsa revealing the relevance of the light energy index to explain the light-induced biological variability. The sharp decrease of the photosynthetic rate at high light energy was accompanied with an increase of the antioxidant network response, such as carotenoids, total polyphenols, and the antioxidant capacity. Conversely, low light energy favorized the intracellular content of lipids and vitamins (B2, B6, B9, D3, K1, A, C, H, and B12) compared to high light energy. CONCLUSIONS: Results of the Biotechnological response curves were discussed in their functional and physiological relevance as well as for the essence of their potential biotechnological applications. This study emphasized the light energy as a relevant tool to explain the biological responses of microalgae towards light climate variability, and, therefore, to design metabolic manipulation of microalgae.

18.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36829917

RESUMEN

Xanthophylls, a group of carotenoids, have attracted attention as human health benefit compounds thanks to their functionality and bioavailability. The great antioxidant and anti-inflammatory abilities of diatoxanthin (Dt), a photoprotective xanthophyll synthetized by diatoms, were recently documented. This study investigates the capacity of Dt to intercept prostate cancer progression in vitro on different human cell lines, exploring its role against cancer proliferation and angiogenesis. Our results highlighted the chemopreventive role of Dt already at low concentration (44.1 pM) and suggest that the Dt-induced cancer cell death occurred through oxidative stress mechanisms. This hypothesis was supported by variations on the expression of key genes and proteins. Oxidative stress cell deaths (e.g., ferroptosis) are recently described types of cell death that are closely related to the pathophysiological processes of many diseases, such as tumors. Nonetheless, the interest of Dt was further strengthened by its ability to inhibit angiogenesis. The results are discussed considering the actual progress and requirements in cancer therapy, notably for prostate cancer.

19.
Environ Pollut ; 317: 120772, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455775

RESUMEN

Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.


Asunto(s)
Metales Pesados , Microbiota , Petróleo , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Petróleo/análisis , Bacterias/genética , Bacterias/metabolismo , Metales Pesados/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos/metabolismo , Sedimentos Geológicos/microbiología
20.
Cells ; 12(7)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048126

RESUMEN

The exploration of natural preventive molecules for nutraceutical and pharmaceutical use has recently increased. In this scenario, marine microorganisms represent an underestimated source of bioactive products endowed with beneficial effects on health that include anti-oxidant, anti-inflammatory, differentiating, anti-tumor, and anti-angiogenic activities. Here, we tested the potential chemopreventive and anti-angiogenic activities of an extract from the marine coastal diatom Skeletonema marinoi Sarno and Zingone (Sm) on prostate cancer (PCa) and endothelial cells. We also tested one of the main carotenoids of the diatom, the xanthophyll pigment fucoxanthin (Fuco). Fuco from the literature is a potential candidate compound involved in chemopreventive activities. Sm extract and Fuco were able to inhibit PCa cell growth and hinder vascular network formation of endothelial cells. The reduced number of cells was partially due to growth inhibition and apoptosis. We studied the molecular targets by qPCR and membrane antibody arrays. Angiogenesis and inflammation molecules were modulated. In particular, Fuco downregulated the expression of Angiopoietin 2, CXCL5, TGFß, IL6, STAT3, MMP1, TIMP1 and TIMP2 in both prostate and endothelial cells. Our study confirmed microalgae-derived drugs as potentially relevant sources of novel nutraceuticals, providing candidates for potential dietary or dietary supplement intervention in cancer prevention approaches.


Asunto(s)
Diatomeas , Neoplasias de la Próstata , Masculino , Humanos , Diatomeas/fisiología , Células Endoteliales , Xantófilas/farmacología , Carotenoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA