Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(8): 2622-2638, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35007364

RESUMEN

Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.


Asunto(s)
Sequías , Xilema , Bosques , Filogenia , Hojas de la Planta/fisiología , Clima Tropical , Madera
2.
Microb Ecol ; 81(2): 283-292, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32920663

RESUMEN

Dispersal is a critical ecological process that modulates gene flow and contributes to the maintenance of genetic and taxonomic diversity within ecosystems. Despite an increasing global understanding of the arbuscular mycorrhizal (AM) fungal diversity, distribution and prevalence in different biomes, we have largely ignored the main dispersal mechanisms of these organisms. To provide a geographical and scientific overview of the available data, we systematically searched for the direct evidence on the AM fungal dispersal agents (abiotic and biotic) and different propagule types (i.e. spores, extraradical hyphae or colonized root fragments). We show that the available data (37 articles) on AM fungal dispersal originates mostly from North America, from temperate ecosystems, from biotic dispersal agents (small mammals) and AM fungal spores as propagule type. Much lesser evidence exists from South American, Asian and African tropical systems and other dispersers such as large-bodied birds and mammals and non-spore propagule types. We did not find strong evidence that spore size varies across dispersal agents, but wind and large animals seem to be more efficient dispersers. However, the data is still too scarce to draw firm conclusions from this finding. We further discuss and propose critical research questions and potential approaches to advance the understanding of the ecology of AM fungi dispersal.


Asunto(s)
Micorrizas/fisiología , Animales , Biota , Ambiente , Geografía , Hifa/citología , Hifa/fisiología , Micorrizas/citología , Micorrizas/aislamiento & purificación , Raíces de Plantas/microbiología , Esporas Fúngicas/citología , Esporas Fúngicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA