Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993047

RESUMEN

Rehabilitative mobility aids are being used extensively for physically impaired people. Efforts are being made to develop human machine interfaces (HMIs), manipulating the biosignals to better control the electromechanical mobility aids, especially the wheelchairs. Creating precise control commands such as move forward, left, right, backward and stop, via biosignals, in an appropriate HMI is the actual challenge, as the people with a high level of disability (quadriplegia and paralysis, etc.) are unable to drive conventional wheelchairs. Therefore, a novel system driven by optical signals addressing the needs of such a physically impaired population is introduced in this paper. The present system is divided into two parts: the first part comprises of detection of eyeball movements together with the processing of the optical signal, and the second part encompasses the mechanical assembly module, i.e., control of the wheelchair through motor driving circuitry. A web camera is used to capture real-time images. The processor used is Raspberry-Pi with Linux operating system. In order to make the system more congenial and reliable, the voice-controlled mode is incorporated in the wheelchair. To appraise the system's performance, a basic wheelchair skill test (WST) is carried out. Basic skills like movement on plain and rough surfaces in forward, reverse direction and turning capability were analyzed for easier comparison with other existing wheelchair setups on the bases of controlling mechanisms, compatibility, design models, and usability in diverse conditions. System successfully operates with average response time of 3 s for eye and 3.4 s for voice control mode.


Asunto(s)
Personas con Discapacidad , Movimientos Oculares , Interfaz Usuario-Computador , Voz , Silla de Ruedas , Humanos
2.
Environ Sci Pollut Res Int ; 30(15): 43068-43095, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35904736

RESUMEN

Due to significant requirement of energy, water, material, and other resources, the manufacturing industries significantly impact environmental, economic, and social dimensions of sustainability (triple bottom-line). In response, today's research is focused on finding solution towards sustainable manufacturing. In this regard, sustainability assessment is an essential strategy. In the past, a variety of tools was developed to evaluate the environmental dimension. Because of this fact, previous review studies were grounded mostly on tools for green manufacturing. Unlike previous review articles, this study was aimed to review and analyze the emerging sustainability assessment methodologies (published from 2010 to 2020) for manufacturing while considering the triple bottom-line concept of sustainability. In this way, the paper presents a decade review on this topic, starting from 2010 as the guidelines for the social dimension became available in 2009. This paper has analyzed various methods and explored recent progress patterns. First, this study critically reviewed the methods and then analyzed their different integrating tools, sustainability dimensions, nature of indicators, difficulty levels, assessment boundaries, etc. The review showed that life cycle assessment and analytic hierarchy process-based approaches were most commonly used as integrating tools. Comparatively, still, environmental dimension was more commonly considered than economic and social dimensions by most of the reviewed methods. From indicators' viewpoint, most of the studied tools were based on limited number of indicators, having no relative weights and validation from the experts. To overcome these challenges, future research directions were outlined to make these methods more inclusive and reliable. Along with putting more focus on economic and social dimensions, there is a need to employ weighted, validated, and applicable indicators in sustainability assessment methods for manufacturing.


Asunto(s)
Comercio , Industria Manufacturera
3.
Front Neurosci ; 14: 584, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655353

RESUMEN

Cognitive workload is one of the widely invoked human factors in the areas of human-machine interaction (HMI) and neuroergonomics. The precise assessment of cognitive and mental workload (MWL) is vital and requires accurate neuroimaging to monitor and evaluate the cognitive states of the brain. In this study, we have decoded four classes of MWL using long short-term memory (LSTM) with 89.31% average accuracy for brain-computer interface (BCI). The brain activity signals are acquired using functional near-infrared spectroscopy (fNIRS) from the prefrontal cortex (PFC) region of the brain. We performed a supervised MWL experimentation with four varying MWL levels on 15 participants (both male and female) and 10 trials of each MWL per participant. Real-time four-level MWL states are assessed using fNIRS system, and initial classification is performed using three strong machine learning (ML) techniques, support vector machine (SVM), k-nearest neighbor (k-NN), and artificial neural network (ANN) with obtained average accuracies of 54.33, 54.31, and 69.36%, respectively. In this study, novel deep learning (DL) frameworks are proposed, which utilizes convolutional neural network (CNN) and LSTM with 87.45 and 89.31% average accuracies, respectively, to solve high-dimensional four-level cognitive states classification problem. Statistical analysis, t-test, and one-way F-test (ANOVA) are also performed on accuracies obtained through ML and DL algorithms. Results show that the proposed DL (LSTM and CNN) algorithms significantly improve classification performance as compared with ML (SVM, ANN, and k-NN) algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA