Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29941635

RESUMEN

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

2.
Bioorg Med Chem Lett ; 24(22): 5207-11, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25316314

RESUMEN

Structure-activity relationship (SAR) studies around a previously reported antimalarial aminomethylthiazole pyrazole carboxamide 1 are reported. Several analogues were synthesised and profiled for in vitro antiplasmodial activity against the drug-sensitive Plasmodium falciparum malaria parasite strain, NF54. Although all the reported analogues exhibited inferior in vitro antiplasmodial activity (IC50 = 0.125-173 µM) relative to compound 1 (IC50 = 0.0203 µM), one analogue, compound 5a, retained submicromolar activity (IC50 = 0.125 µM).


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Tiazoles/química , Tiazoles/farmacología , Animales , Ratones , Plasmodium falciparum/fisiología , Relación Estructura-Actividad
3.
Malar J ; 12: 424, 2013 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-24237770

RESUMEN

BACKGROUND: Recent whole cell in vitro screening campaigns identified thousands of compounds that are active against asexual blood stages of Plasmodium falciparum at submicromolar concentrations. These hits have been made available to the public, providing many novel chemical starting points for anti-malarial drug discovery programmes. Knowing which of these hits are fast-acting compounds is of great interest. Firstly, a fast action will ensure rapid relief of symptoms for the patient. Secondly, by rapidly reducing the parasitaemia, this could minimize the occurrence of mutations leading to new drug resistance mechanisms.An in vitro assay that provides information about the speed of action of test compounds has been developed by researchers at GlaxoSmithKline (GSK) in Spain. This assay also provides an in vitro measure for the ratio between parasitaemia at the onset of drug treatment and after one intra-erythrocytic cycle (parasite reduction ratio, PRR). Both parameters are needed to determine in vitro killing rates of anti-malarial compounds. A drawback of the killing rate assay is that it takes a month to obtain first results. METHODS: The approach described in the present study is focused only on the speed of action of anti-malarials. This has the advantage that initial results can be achieved within 4-7 working days, which helps to distinguish between fast and slow-acting compounds relatively quickly. It is expected that this new assay can be used as a filter in the early drug discovery phase, which will reduce the number of compounds progressing to secondary, more time-consuming assays like the killing rate assay. RESULTS: The speed of action of a selection of seven anti-malarial compounds was measured with two independent experimental procedures using modifications of the standard [3H]hypoxanthine incorporation assay. Depending on the outcome of both assays, the tested compounds were classified as either fast or non-fast-acting. CONCLUSION: The results obtained for the anti-malarials chloroquine, artesunate, atovaquone, and pyrimethamine are consistent with previous observations, suggesting the methodology is a valid way to rapidly identify fast-acting anti-malarial compounds. Another advantage of the approach is its ability to discriminate between static or cidal compound effects.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Parasitaria/métodos , Factores de Tiempo
4.
ACS Med Chem Lett ; 14(7): 875-878, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37465315

RESUMEN

This viewpoint outlines the case for developing new chemical entities (NCEs) as racemates in infectious diseases and where both enantiomers and racemate retain similar on- and off-target activities as well as similar PK profiles. There are not major regulatory impediments for the development of a racemic drug, and minimizing the manufacturing costs becomes a particularly important objective when bringing an anti-infective therapeutic to the marketplace in the endemic settings of infectious diseases.

5.
J Med Chem ; 61(18): 8061-8077, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29771541

RESUMEN

Advances in the genetics, function, and stage-specificity of Plasmodium kinases has driven robust efforts to identify targets for the design of antimalarial therapies. Reverse genomics following phenotypic screening against Plasmodia or related parasites has uncovered vulnerable kinase targets including PI4K, PKG, and GSK-3, an approach bolstered by access to human disease-directed kinase libraries. Alternatively, screening compound libraries against Plasmodium kinases has successfully led to inhibitors with antiplasmodial activity. As with other therapeutic areas, optimizing compound ADMET and PK properties in parallel with target inhibitory potency and whole cell activity becomes paramount toward advancing compounds as clinical candidates. These and other considerations will be discussed in the context of progress achieved toward deriving important, novel mode-of-action kinase-inhibiting antimalarial medicines.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium/efectos de los fármacos , Plasmodium/enzimología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/química , Humanos , Malaria/enzimología , Malaria/parasitología
6.
Sci Transl Med ; 9(387)2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446690

RESUMEN

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Aminopiridinas/uso terapéutico , Antimaláricos/uso terapéutico , Sulfonas/uso terapéutico , Aminopiridinas/farmacología , Animales , Antimaláricos/farmacología , Femenino , Malaria/tratamiento farmacológico , Malaria/enzimología , Masculino , Ratones , Ratones SCID , Pruebas de Sensibilidad Parasitaria , Plasmodium/efectos de los fármacos , Plasmodium/patogenicidad , Sulfonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA