Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell ; 161(3): 610-621, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25910210

RESUMEN

Cytotoxic brain edema triggered by neuronal swelling is the chief cause of mortality following brain trauma and cerebral infarct. Using fluorescence lifetime imaging to analyze contributions of intracellular ionic changes in brain slices, we find that intense Na(+) entry triggers a secondary increase in intracellular Cl(-) that is required for neuronal swelling and death. Pharmacological and siRNA-mediated knockdown screening identified the ion exchanger SLC26A11 unexpectedly acting as a voltage-gated Cl(-) channel that is activated upon neuronal depolarization to membrane potentials lower than -20 mV. Blockade of SLC26A11 activity attenuates both neuronal swelling and cell death. Therefore cytotoxic neuronal edema occurs when sufficient Na(+) influx and depolarization is followed by Cl(-) entry via SLC26A11. The resultant NaCl accumulation causes subsequent neuronal swelling leading to neuronal death. These findings shed light on unique elements of volume control in excitable cells and lay the ground for the development of specific treatments for brain edema.


Asunto(s)
Edema Encefálico/patología , Antiportadores de Cloruro-Bicarbonato/metabolismo , Neuronas/metabolismo , Animales , Edema Encefálico/metabolismo , Muerte Celular , Células Cultivadas , Antiportadores de Cloruro-Bicarbonato/química , Humanos , Técnicas In Vitro , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Ratones , Neuronas/patología , Ratas , Sodio/metabolismo , Transportadores de Sulfato
2.
FASEB J ; 36(5): e22314, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35416346

RESUMEN

Epigenetic modification is a key driver of differentiation, and the deacetylase Sirtuin1 (SIRT1) is an established regulator of cell function, ageing, and articular cartilage homeostasis. Here we investigate the role of SIRT1 during development of chondrocytes by using human embryonic stem cells (hESCs). HESC-chondroprogenitors were treated with SIRT1 activator; SRT1720, or inhibitor; EX527, during differentiation. Activation of SIRT1 early in 3D-pellet culture led to significant increases in the expression of ECM genes for type-II collagen (COL2A1) and aggrecan (ACAN), and chondrogenic transcription factors SOX5 and ARID5B, with SOX5 ChIP analysis demonstrating enrichment on the chondrocyte specific -10 (A1) enhancer of ACAN. Unexpectedly, when SIRT1 was activated, while ACAN was enhanced, glycosaminoglycans (GAGs) were reduced, paralleled by down regulation of gene expression for N-acetylgalactosaminyltransferase type 1 (GALNT1) responsible for GAG chain initiation/elongation. A positive correlation between ARID5B and COL2A1 was observed, and co-IP assays indicated association of ARID5B with SIRT1, further suggesting that COL2A1 expression is promoted by an ARID5B-SIRT1 interaction. In conclusion, SIRT1 activation positively impacts on the expression of the main ECM proteins, while altering ECM composition and suppressing GAG content during human cartilage development. These results suggest that SIRT1 activity has a differential effect on GAGs and proteins in developing hESC-chondrocytes and could only be beneficial to cartilage development and matrix protein synthesis if balanced by addition of positive GAG mediators.


Asunto(s)
Cartílago Articular , Células Madre Embrionarias Humanas , Agrecanos/genética , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis , Glicosaminoglicanos/metabolismo , Humanos , Sirtuina 1/genética , Sirtuina 1/metabolismo
3.
Eur J Neurosci ; 55(4): 1063-1078, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33370468

RESUMEN

There is significant interest in the use of cannabinoids for the treatment of many epilepsies including absence epilepsy (AE). Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model many aspects of AE including the presence of spike-and-wave discharges (SWDs) on electroencephalogram (EEG) and behavioral comorbidities, such as elevated anxiety. However, the effects of cannabis plant-based phytocannabinoids have not been tested in GAERS. Therefore, we investigated how SWDs in GAERS are altered by the two most common phytocannabinoids, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), and exposure to smoke from two different chemovars of cannabis. Animals were implanted with bipolar electrodes in the somatosensory cortex and EEGs were recorded for 2 hr. Injected THC (1-10 mg/kg, i.p.) dose-dependently increased SWDs to over 200% of baseline. In contrast, CBD (30-100 mg/kg, i.p.) produced a ~50% reduction in SWDs. Exposure to smoke from a commercially available chemovar of high-THC cannabis (Mohawk, Aphria Inc.) increased SWDs whereas a low-THC/high-CBD chemovar of cannabis (Treasure Island, Aphria Inc.) did not significantly affect SWDs in GAERS. Pre-treatment with a CB1R antagonist (SR141716A) did not prevent the high-THC cannabis smoke from increasing SWDs, suggesting that the THC-mediated increase may not be CB1R-dependent. Plasma concentrations of THC and CBD were similar to previously reported values following injection and smoke exposure. Compared to injected CBD, it appears Treasure Island did not increase plasma levels sufficiently to observe an anti-epileptic effect. Together these experiments provide initial evidence that acute phytocannabinoid administration exerts the biphasic modulation of SWDs and may differentially impact patients with AE.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia Tipo Ausencia , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Cannabinoides/farmacología , Dronabinol , Electroencefalografía , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Humanos , Ratas , Ratas Wistar
4.
J Med Genet ; 58(11): 778-782, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900841

RESUMEN

BACKGROUND: Although carpal tunnel syndrome (CTS) is the most common form of peripheral entrapment neuropathy, its pathogenesis remains largely unknown. An estimated heritability index of 0.46 and an increased familial occurrence indicate that genetic factors must play a role in the pathogenesis. METHODS AND RESULTS: We report on a family in which CTS occurred in subsequent generations at an unusually young age. Additional clinical features included brachydactyly and short Achilles tendons resulting in toe walking in childhood. Using exome sequencing, we identified a heterozygous variant (c.5009T>G; p.Phe1670Cys) in the fibrillin-2 (FBN2) gene that co-segregated with the phenotype in the family. Functional assays showed that the missense variant impaired integrin-mediated cell adhesion and migration. Moreover, we observed an increased transforming growth factor-ß signalling and fibrosis in the carpal tissues of affected individuals. A variant burden test in a large cohort of patients with CTS revealed a significantly increased frequency of rare (6.7% vs 2.5%-3.4%, p<0.001) and high-impact (6.9% vs 2.7%, p<0.001) FBN2 variants in patient alleles compared with controls. CONCLUSION: The identification of a novel FBN2 variant (p.Phe1670Cys) in a unique family with early onset CTS, together with the observed increased frequency of rare and high-impact FBN2 variants in patients with sporadic CTS, strongly suggest a role of FBN2 in the pathogenesis of CTS.


Asunto(s)
Síndrome del Túnel Carpiano/genética , Fibrilina-2/genética , Tendón Calcáneo/anomalías , Estatura/genética , Síndrome del Túnel Carpiano/diagnóstico por imagen , Síndrome del Túnel Carpiano/etiología , Humanos , Masculino , Mutación Missense , Linaje
5.
Semin Cell Dev Biol ; 89: 109-117, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30016650

RESUMEN

Fibrillin microfibrils are extensible polymers that endow connective tissues with long-range elasticity and have widespread distributions in both elastic and non-elastic tissues. They act as a template for elastin deposition during elastic fibre formation and are essential for maintaining the integrity of tissues such as blood vessels, lung, skin and ocular ligaments. A reduction in fibrillin is seen in tissues in vascular ageing, chronic obstructive pulmonary disease, skin ageing and UV induced skin damage, and age-related vision deterioration. Most mutations in fibrillin cause Marfan syndrome, a genetic disease characterised by overgrowth of the long bones and other skeletal abnormalities with cardiovascular and eye defects. However, mutations in fibrillin and fibrillin-binding proteins can also cause short-stature pathologies. All of these diseases have been linked to dysregulated growth factor signalling which forms a major functional role for fibrillin.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Fibrilinas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Microfilamentos/genética , Animales , Tejido Elástico/metabolismo , Elasticidad , Elastina/genética , Elastina/metabolismo , Humanos , Microfibrillas/genética , Transducción de Señal/genética , Piel/crecimiento & desarrollo
6.
Hum Mol Genet ; 27(21): 3675-3687, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060141

RESUMEN

Fibrillin microfibrils are extracellular matrix assemblies that form the template for elastic fibres, endow blood vessels, skin and other elastic tissues with extensible properties. They also regulate the bioavailability of potent growth factors of the TGF-ß superfamily. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)10 is an essential factor in fibrillin microfibril function. Mutations in fibrillin-1 or ADAMTS10 cause Weill-Marchesani syndrome (WMS) characterized by short stature, eye defects, hypermuscularity and thickened skin. Despite its importance, there is poor understanding of the role of ADAMTS10 and its function in fibrillin microfibril assembly. We have generated an ADAMTS10 WMS mouse model using Clustered Regularly Spaced Interspaced Short Palindromic Repeats and CRISPR associated protein 9 (CRISPR-Cas9) to introduce a truncation mutation seen in WMS patients. Homozygous WMS mice are smaller and have shorter long bones with perturbation to the zones of the developing growth plate and changes in cell proliferation. Furthermore, there are abnormalities in the ciliary apparatus of the eye with decreased ciliary processes and abundant fibrillin-2 microfibrils suggesting perturbation of a developmental expression switch. WMS mice have increased skeletal muscle mass and more myofibres, which is likely a consequence of an altered skeletal myogenesis. These results correlated with expression data showing down regulation of Growth differentiation factor (GDF8) and Bone Morphogenetic Protein (BMP) growth factor genes. In addition, the mitochondria in skeletal muscle are larger with irregular shape coupled with increased phospho-p38 mitogen-activated protein kinase (MAPK) suggesting muscle remodelling. Our data indicate that decreased SMAD1/5/8 and increased p38/MAPK signalling are associated with ADAMTS10-induced WMS. This model will allow further studies of the disease mechanism to facilitate the development of therapeutic interventions.


Asunto(s)
Proteínas ADAMTS/genética , Modelos Animales de Enfermedad , Microfibrillas/metabolismo , Mutación , Transducción de Señal , Síndrome de Weill-Marchesani/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Proteínas Smad Reguladas por Receptores/metabolismo , Síndrome de Weill-Marchesani/genética
7.
Brain ; 142(2): 412-425, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649209

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy in which brainstem spreading depolarization may play a pivotal role, as suggested by animal studies. However, patiotemporal details of spreading depolarization occurring in relation to fatal seizures have not been investigated. In addition, little is known about behavioural and neurophysiological features that may discriminate spontaneous fatal from non-fatal seizures. Transgenic mice carrying the missense mutation S218L in the α1A subunit of Cav2.1 (P/Q-type) Ca2+ channels exhibit enhanced excitatory neurotransmission and increased susceptibility to spreading depolarization. Homozygous Cacna1aS218L mice show spontaneous non-fatal and fatal seizures, occurring throughout life, resulting in reduced life expectancy. To identify characteristics of fatal and non-fatal spontaneous seizures, we compared behavioural and electrophysiological seizure dynamics in freely-behaving homozygous Cacna1aS218L mice. To gain insight on the role of brainstem spreading depolarization in SUDEP, we studied the spatiotemporal distribution of spreading depolarization in the context of seizure-related death. Spontaneous and electrically-induced seizures were investigated by video monitoring and electrophysiological recordings in freely-behaving Cacna1aS218L and wild-type mice. Homozygous Cacna1aS218L mice showed multiple spontaneous tonic-clonic seizures and died from SUDEP in adulthood. Death was preceded by a tonic-clonic seizure terminating with hindlimb clonus, with suppression of cortical neuronal activity during and after the seizure. Induced seizures in freely-behaving homozygous Cacna1aS218L mice were followed by multiple spreading depolarizations and death. In wild-type or heterozygous Cacna1aS218L mice, induced seizures and spreading depolarization were never followed by death. To identify temporal and regional features of seizure-induced spreading depolarization related to fatal outcome, diffusion-weighted MRI was performed in anaesthetized homozygous Cacna1aS218L and wild-type mice. In homozygous Cacna1aS218L mice, appearance of seizure-related spreading depolarization in the brainstem correlated with respiratory arrest that was followed by cardiac arrest and death. Recordings in freely-behaving homozygous Cacna1aS218L mice confirmed brainstem spreading depolarization during spontaneous fatal seizures. These data underscore the value of the homozygous Cacna1aS218L mouse model for identifying discriminative features of fatal compared to non-fatal seizures, and support a key role for cortical neuronal suppression and brainstem spreading depolarization in SUDEP pathophysiology.


Asunto(s)
Tronco Encefálico/fisiopatología , Canales de Calcio Tipo N/genética , Corteza Cerebral/fisiopatología , Depresión de Propagación Cortical/fisiología , Convulsiones/genética , Convulsiones/fisiopatología , Animales , Muerte Súbita , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Proc Natl Acad Sci U S A ; 114(9): 2401-2406, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28223480

RESUMEN

Migraine is characterized by severe headaches that can be preceded by an aura likely caused by cortical spreading depression (SD). The antiepileptic pregabalin (Lyrica) shows clinical promise for migraine therapy, although its efficacy and mechanism of action are unclear. As detected by diffusion-weighted MRI (DW-MRI) in wild-type (WT) mice, the acute systemic administration of pregabalin increased the threshold for SD initiation in vivo. In familial hemiplegic migraine type 1 mutant mice expressing human mutations (R192Q and S218L) in the CaV2.1 (P/Q-type) calcium channel subunit, pregabalin slowed the speed of SD propagation in vivo. Acute systemic administration of pregabalin in vivo also selectively prevented the migration of SD into subcortical striatal and hippocampal regions in the R192Q strain that exhibits a milder phenotype and gain of CaV2.1 channel function. At the cellular level, pregabalin inhibited glutamatergic synaptic transmission differentially in WT, R192Q, and S218L mice. The study describes a DW-MRI analysis method for tracking the progression of SD and provides support and a mechanism of action for pregabalin as a possible effective therapy in the treatment of migraine.


Asunto(s)
Analgésicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/genética , Ataxia Cerebelosa/tratamiento farmacológico , Depresión de Propagación Cortical/efectos de los fármacos , Trastornos Migrañosos/tratamiento farmacológico , Migraña con Aura/tratamiento farmacológico , Pregabalina/farmacología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Canales de Calcio Tipo N/metabolismo , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/patología , Migraña con Aura/diagnóstico por imagen , Migraña con Aura/metabolismo , Migraña con Aura/patología , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Transmisión Sináptica
9.
Eur J Neurosci ; 50(6): 3046-3059, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30889299

RESUMEN

Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are a rodent model of childhood absence epilepsy (CAE) that display a gain-of-function mutation in the gene encoding the Cav3.2 T-type calcium channel. GAERS demonstrate heightened learning and delayed extinction of fear conditioning. Our objective in the present study was to examine the effects of the pan-T-type calcium channel blocker Z944 on the acquisition, consolidation and extinction of conditioned fear in GAERS and the non-epileptic control (NEC) strain. Z944 (10 mg/kg; ip) was administered 15 min prior to either acquisition, extinction day 1 (24 hr later), acquisition and extinction day 1, or during the consolidation (post-acquisition) of tone-cued fear conditioning. Extinction was examined 24 and 48 hr after conditioning. In drug naïve GAERS, increased freezing during the acquisition and extinction phases of fear conditioning was found. Short-term effects of Z944 on performance were observed as Z944 increased freezing during testing on the day it was administered. Z944 administered prior to the acquisition phase had a long-term effect on extinction. Specifically, both GAERS and NECs showed a decrease in freezing during extinction relative to drug naïve GAERS and NEC rats respectively. Regardless of strain or treatment, female rats showed reduced extinction of fear relative to male rats. These results demonstrate that T-type calcium channels contribute to the neural systems that mediate the learning and memory of conditioned fear. Overall, these findings suggest that T-type calcium channel blockers show promise in the treatment of learning impairments observed in disorders such as CAE.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Condicionamiento Clásico/efectos de los fármacos , Epilepsia Tipo Ausencia/genética , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Piperidinas/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Memoria/efectos de los fármacos , Ratas
10.
Epilepsia ; 59(4): 778-791, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29468672

RESUMEN

OBJECTIVE: Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS: Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS: TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE: This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio Tipo T/fisiología , Epilepsia Tipo Ausencia/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Tálamo/fisiopatología , Animales , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Femenino , Masculino , Ratas , Ratas Transgénicas , Convulsiones/genética
11.
Methods ; 96: 85-96, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608109

RESUMEN

Induced pluripotent stem cells (iPSCs) provide invaluable opportunities for future cell therapies as well as for studying human development, modelling diseases and discovering therapeutics. In order to realise the potential of iPSCs, it is crucial to comprehensively characterise cells generated from large cohorts of healthy and diseased individuals. The human iPSC initiative (HipSci) is assessing a large panel of cell lines to define cell phenotypes, dissect inter- and intra-line and donor variability and identify its key determinant components. Here we report the establishment of a high-content platform for phenotypic analysis of human iPSC lines. In the described assay, cells are dissociated and seeded as single cells onto 96-well plates coated with fibronectin at three different concentrations. This method allows assessment of cell number, proliferation, morphology and intercellular adhesion. Altogether, our strategy delivers robust quantification of phenotypic diversity within complex cell populations facilitating future identification of the genetic, biological and technical determinants of variance. Approaches such as the one described can be used to benchmark iPSCs from multiple donors and create novel platforms that can readily be tailored for disease modelling and drug discovery.


Asunto(s)
Fibronectinas/química , Ensayos Analíticos de Alto Rendimiento , Células Madre Pluripotentes Inducidas/ultraestructura , Imagen Molecular/métodos , Fenotipo , Secuencia de Aminoácidos , Adhesión Celular , Diferenciación Celular , Línea Celular , Células Nutrientes/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Datos de Secuencia Molecular , Péptidos/química
12.
Neurobiol Dis ; 94: 106-15, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27282256

RESUMEN

Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits.


Asunto(s)
Acetamidas/farmacología , Benzamidas/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Epilepsia Tipo Ausencia , Trastornos de la Memoria , Memoria/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Femenino , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Piperidinas , Tacto/fisiología
13.
Eur J Neurosci ; 43(1): 25-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490879

RESUMEN

Behavioural, neurological, and genetic similarities exist in epilepsies, their psychiatric comorbidities, and various psychiatric illnesses, suggesting common aetiological factors. Rodent models of epilepsy are used to characterize the comorbid symptoms apparent in epilepsy and their neurobiological mechanisms. The present study was designed to assess Pavlovian fear conditioning and latent inhibition in a polygenetic rat model of absence epilepsy, i.e. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the non-epileptic control (NEC) strain. Electrophysiological recordings confirmed the presence of spike-wave discharges in young adult GAERS but not NEC rats. A series of behavioural tests designed to assess anxiety-like behaviour (elevated plus maze, open field, acoustic startle response) and cognition (Pavlovian conditioning and latent inhibition) was subsequently conducted on male and female offspring. Results showed that GAERS exhibited significantly higher anxiety-like behaviour, a characteristic reported previously. In addition, using two protocols that differed in shock intensity, we found that both sexes of GAERS displayed exaggerated cued and contextual Pavlovian fear conditioning and impaired fear extinction. Fear reinstatement to the conditioned stimuli following unsignalled footshocks did not differ between the strains. Male GAERS also showed impaired latent inhibition in a paradigm using Pavlovian fear conditioning, suggesting that they may have altered attention, particularly related to previously irrelevant stimuli in the environment. Neither the female GAERS nor NEC rats showed evidence of latent inhibition in our paradigm. Together, the results suggest that GAERS may be a particularly useful model for assessing therapeutics designed to improve the emotional and cognitive disturbances associated with absence epilepsy.


Asunto(s)
Ansiedad/fisiopatología , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/fisiopatología , Epilepsia Tipo Ausencia/psicología , Miedo/fisiología , Potenciales de Acción , Animales , Ansiedad/etiología , Reacción de Prevención/fisiología , Comorbilidad , Electroencefalografía , Epilepsia Tipo Ausencia/complicaciones , Epilepsia Tipo Ausencia/genética , Extinción Psicológica/fisiología , Femenino , Humanos , Masculino , Inhibición Prepulso , Ratas , Reflejo de Sobresalto , Corteza Somatosensorial/fisiopatología
14.
J Cell Sci ; 127(Pt 1): 158-71, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190885

RESUMEN

Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, ß-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5ß1 and/or α8ß1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFß, which stimulates epithelial-mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular ß-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial-mesenchymal status modulates microfibril deposition.


Asunto(s)
Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Microfibrillas/metabolismo , Proteínas de Microfilamentos/genética , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Células Epiteliales/ultraestructura , Femenino , Fibrilina-1 , Fibrilinas , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Heparitina Sulfato/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/ultraestructura , Microfibrillas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Especificidad de Órganos , Podocitos/metabolismo , Podocitos/ultraestructura , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Sindecano-4/genética , Sindecano-4/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Pflugers Arch ; 467(6): 1367-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24953239

RESUMEN

Burst-firing in distinct subsets of thalamic relay (TR) neurons is thought to be a key requirement for the propagation of absence seizures. However, in the well-regarded Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model as yet there has been no link described between burst-firing in TR neurons and spike-and-wave discharges (SWDs). GAERS ventrobasal (VB) neurons are a specific subset of TR neurons that do not normally display burst-firing during absence seizures in the GAERS model, and here, we assessed the underlying relationship of VB burst-firing with Ih and T-type calcium currents between GAERS and non-epileptic control (NEC) animals. In response to 200-ms hyperpolarizing current injections, adult epileptic but not pre-epileptic GAERS VB neurons displayed suppressed burst-firing compared to NEC. In response to longer duration 1,000-ms hyperpolarizing current injections, both pre-epileptic and epileptic GAERS VB neurons required significantly more hyperpolarizing current injection to burst-fire than those of NEC animals. The current density of the Hyperpolarization and Cyclic Nucleotide-activated (HCN) current (Ih) was found to be increased in GAERS VB neurons, and the blockade of Ih relieved the suppressed burst-firing in both pre-epileptic P15-P20 and adult animals. In support, levels of HCN-1 and HCN-3 isoform channel proteins were increased in GAERS VB thalamic tissue. T-type calcium channel whole-cell currents were found to be decreased in P7-P9 GAERS VB neurons, and also noted was a decrease in CaV3.1 mRNA and protein levels in adults. Z944, a potent T-type calcium channel blocker with anti-epileptic properties, completely abolished hyperpolarization-induced VB burst-firing in both NEC and GAERS VB neurons.


Asunto(s)
Potenciales de Acción , Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/fisiopatología , Interneuronas/fisiología , Tálamo/fisiopatología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Tálamo/citología , Tálamo/metabolismo
16.
Ann Rheum Dis ; 74(6): 1249-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24442880

RESUMEN

OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-ß pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-ß/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-ß-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.


Asunto(s)
Cromosomas Humanos Par 8/genética , Duplicación de Gen , Factor 6 de Diferenciación de Crecimiento/genética , Deformidades Congénitas de la Mano/genética , Artropatías/congénito , Osificación Heterotópica/genética , Esclerodermia Sistémica/genética , Sindecano-2/genética , Adulto , Anciano , Preescolar , Matriz Extracelular/metabolismo , Facies , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Factor 6 de Diferenciación de Crecimiento/metabolismo , Deformidades Congénitas de la Mano/metabolismo , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Lactante , Artropatías/genética , Artropatías/metabolismo , Artropatías/fisiopatología , Masculino , Persona de Mediana Edad , Osificación Heterotópica/metabolismo , Osificación Heterotópica/fisiopatología , Fenotipo , Transducción de Señal , Sindecano-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven
17.
Biochim Biophys Acta ; 1828(7): 1572-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22885138

RESUMEN

Low voltage-activated (LVA) T-type calcium channels are well regarded as a key mechanism underlying the generation of neuronal burst-firing. Their low threshold for activation combined with a rapid and transient calcium conductance generates low-threshold calcium potentials (LTCPs), upon the crest of which high frequency action potentials fire for a brief period. Experiments using simultaneous electroencephalography (EEG) and intracellular recordings demonstrate that neuronal burst-firing is a likely causative component in the generation of normal sleep patterns as well as some pathophysiological conditions, such as epileptic seizures. However, less is known as to how these neuronal bursts impact brain behavior, in particular network synchronization. In this review we summarize recent findings concerning the role of T-type calcium channels in burst-firing and discuss how they likely contribute to the generation of network synchrony. We further outline the function of burst-firing and network synchrony in terms of epileptic seizures. This article is part of a Special Issue entitled: Calcium channels.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio Tipo T/fisiología , Calcio/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Red Nerviosa/fisiología , Animales , Humanos
18.
Br J Clin Pharmacol ; 77(5): 729-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23834404

RESUMEN

Low voltage-activated T-type calcium channels were originally cloned in the 1990s and much research has since focused on identifying the physiological roles of these channels in health and disease states. T-type calcium channels are expressed widely throughout the brain and peripheral tissues, and thus have been proposed as therapeutic targets for a variety of diseases such as epilepsy, insomnia, pain, cancer and hypertension. This review discusses the literature concerning the role of T-type calcium channels in physiological and pathological processes related to epilepsy. T-type calcium channels have been implicated in pathology of both the genetic and acquired epilepsies and several anti-epileptic drugs (AEDs) in clinical use are known to suppress seizures via inhibition of T-type calcium channels. Despite the fact that more than 15 new AEDs have become clinically available over the past 20 years at least 30% of epilepsy patients still fail to achieve seizure control, and many patients experience unwanted side effects. Furthermore there are no treatments that prevent the development of epilepsy or mitigate the epileptic state once established. Therefore there is an urgent need for the development of new AEDs that are effective in patients with drug resistant epilepsy, are anti-epileptogenic and are better tolerated. We also review the mechanisms of action of the current AEDs with known effects on T-type calcium channels and discuss novel compounds that are being investigated as new treatments for epilepsy.


Asunto(s)
Anticonvulsivantes/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/fisiología , Epilepsia/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Epilepsia/clasificación , Epilepsia/etiología , Humanos , Sueño/fisiología
19.
Expert Rev Mol Med ; 15: e8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23962539

RESUMEN

Elastic fibres are insoluble components of the extracellular matrix of dynamic connective tissues such as skin, arteries, lungs and ligaments. They are laid down during development, and comprise a cross-linked elastin core within a template of fibrillin-based microfibrils. Their function is to endow tissues with the property of elastic recoil, and they also regulate the bioavailability of transforming growth factor ß. Severe heritable elastic fibre diseases are caused by mutations in elastic fibre components; for example, mutations in elastin cause supravalvular aortic stenosis and autosomal dominant cutis laxa, mutations in fibrillin-1 cause Marfan syndrome and Weill-Marchesani syndrome, and mutations in fibulins-4 and -5 cause autosomal recessive cutis laxa. Acquired elastic fibre defects include dermal elastosis, whereas inflammatory damage to fibres contributes to pathologies such as pulmonary emphysema and vascular disease. This review outlines the latest understanding of the composition and assembly of elastic fibres, and describes elastic fibre diseases and current therapeutic approaches.


Asunto(s)
Enfermedad , Tejido Elástico , Salud , Animales , Tejido Elástico/química , Tejido Elástico/metabolismo , Humanos
20.
Mol Brain ; 16(1): 76, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924146

RESUMEN

Familial hemiplegic migraine type-1 (FHM-1) is a form of migraine with aura caused by mutations in the P/Q-type (Cav2.1) voltage-gated calcium channel. Pregabalin, used clinically in the treatment of chronic pain and epilepsy, inhibits P/Q-type calcium channel activity and recent studies suggest that it may have potential for the treatment of migraine. Spreading Depolarization (SD) is a neurophysiological phenomenon that can occur during migraine with aura by propagating a wave of silenced neuronal function through cortex and sometimes subcortical brain structures. Here, utilizing an optogenetic stimulation technique optimized to allow for non-invasive initiation of cortical SD, we demonstrate that chronic pregabalin administration [12 mg/kg/day (s.c.)] in vivo increased the threshold for cortical spreading depolarization in transgenic mice harboring the clinically-relevant Cav2.1S218L mutation (S218L). In addition, chronic pregabalin treatment limited subcortical propagation of recurrent spreading depolarization events to the striatum and hippocampus in both wild-type and S218L mice. To examine contributing underlying mechanisms of action of chronic pregabalin, we performed whole-cell patch-clamp electrophysiology in CA1 neurons in ex vivo brain slices from mice treated with chronic pregabalin vs vehicle. In WT mice, chronic pregabalin produced a decrease in spontaneous excitatory postsynaptic current (sEPSC) amplitude with no effect on frequency. In contrast, in S218L mice chronic pregabalin produced an increase in sEPSC amplitude and decreased frequency. These electrophysiological findings suggest that in FHM-1 mice chronic pregabalin acts through both pre- and post-synaptic mechanisms in CA1 hippocampal neurons to elicit FHM-1 genotype-specific inhibitory action. The results highlight the potential of chronic pregabalin to limit recurrent SD to subcortical brain structures during pathophysiological events in both the genetically-normal and FHM-1 brain. The work further provides insights into FHM-1 pathophysiology and the potential for chronic pregabalin treatment to prevent SD in migraineurs.


Asunto(s)
Trastornos Migrañosos , Migraña con Aura , Ratones , Animales , Migraña con Aura/tratamiento farmacológico , Migraña con Aura/genética , Pregabalina/farmacología , Pregabalina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Ratones Transgénicos , Hipocampo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA